Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

2x^{2}+x-5-2x=1
Resta 2x en los dos lados.
2x^{2}-x-5=1
Combina x y -2x para obtener -x.
2x^{2}-x-5-1=0
Resta 1 en los dos lados.
2x^{2}-x-6=0
Resta 1 de -5 para obtener -6.
a+b=-1 ab=2\left(-6\right)=-12
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como 2x^{2}+ax+bx-6. Para buscar a y b, configure un sistema que se va a resolver.
1,-12 2,-6 3,-4
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. Mostrar todos los pares de números enteros que den como producto -12.
1-12=-11 2-6=-4 3-4=-1
Calcule la suma de cada par.
a=-4 b=3
La solución es el par que proporciona suma -1.
\left(2x^{2}-4x\right)+\left(3x-6\right)
Vuelva a escribir 2x^{2}-x-6 como \left(2x^{2}-4x\right)+\left(3x-6\right).
2x\left(x-2\right)+3\left(x-2\right)
Factoriza 2x en el primero y 3 en el segundo grupo.
\left(x-2\right)\left(2x+3\right)
Simplifica el término común x-2 con la propiedad distributiva.
x=2 x=-\frac{3}{2}
Para buscar soluciones de ecuaciones, resuelva x-2=0 y 2x+3=0.
2x^{2}+x-5-2x=1
Resta 2x en los dos lados.
2x^{2}-x-5=1
Combina x y -2x para obtener -x.
2x^{2}-x-5-1=0
Resta 1 en los dos lados.
2x^{2}-x-6=0
Resta 1 de -5 para obtener -6.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 2\left(-6\right)}}{2\times 2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 2 por a, -1 por b y -6 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-8\left(-6\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-\left(-1\right)±\sqrt{1+48}}{2\times 2}
Multiplica -8 por -6.
x=\frac{-\left(-1\right)±\sqrt{49}}{2\times 2}
Suma 1 y 48.
x=\frac{-\left(-1\right)±7}{2\times 2}
Toma la raíz cuadrada de 49.
x=\frac{1±7}{2\times 2}
El opuesto de -1 es 1.
x=\frac{1±7}{4}
Multiplica 2 por 2.
x=\frac{8}{4}
Ahora, resuelva la ecuación x=\frac{1±7}{4} dónde ± es más. Suma 1 y 7.
x=2
Divide 8 por 4.
x=-\frac{6}{4}
Ahora, resuelva la ecuación x=\frac{1±7}{4} dónde ± es menos. Resta 7 de 1.
x=-\frac{3}{2}
Reduzca la fracción \frac{-6}{4} a su mínima expresión extrayendo y anulando 2.
x=2 x=-\frac{3}{2}
La ecuación ahora está resuelta.
2x^{2}+x-5-2x=1
Resta 2x en los dos lados.
2x^{2}-x-5=1
Combina x y -2x para obtener -x.
2x^{2}-x=1+5
Agrega 5 a ambos lados.
2x^{2}-x=6
Suma 1 y 5 para obtener 6.
\frac{2x^{2}-x}{2}=\frac{6}{2}
Divide los dos lados por 2.
x^{2}-\frac{1}{2}x=\frac{6}{2}
Al dividir por 2, se deshace la multiplicación por 2.
x^{2}-\frac{1}{2}x=3
Divide 6 por 2.
x^{2}-\frac{1}{2}x+\left(-\frac{1}{4}\right)^{2}=3+\left(-\frac{1}{4}\right)^{2}
Divida -\frac{1}{2}, el coeficiente del término x, mediante la 2 de obtener -\frac{1}{4}. A continuación, agregue el cuadrado de -\frac{1}{4} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-\frac{1}{2}x+\frac{1}{16}=3+\frac{1}{16}
Obtiene el cuadrado de -\frac{1}{4}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}-\frac{1}{2}x+\frac{1}{16}=\frac{49}{16}
Suma 3 y \frac{1}{16}.
\left(x-\frac{1}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}-\frac{1}{2}x+\frac{1}{16}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-\frac{1}{4}=\frac{7}{4} x-\frac{1}{4}=-\frac{7}{4}
Simplifica.
x=2 x=-\frac{3}{2}
Suma \frac{1}{4} a los dos lados de la ecuación.