Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=1 ab=2\left(-3\right)=-6
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como 2x^{2}+ax+bx-3. Para buscar a y b, configure un sistema que se va a resolver.
-1,6 -2,3
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -6.
-1+6=5 -2+3=1
Calcule la suma de cada par.
a=-2 b=3
La solución es el par que proporciona suma 1.
\left(2x^{2}-2x\right)+\left(3x-3\right)
Vuelva a escribir 2x^{2}+x-3 como \left(2x^{2}-2x\right)+\left(3x-3\right).
2x\left(x-1\right)+3\left(x-1\right)
Factoriza 2x en el primero y 3 en el segundo grupo.
\left(x-1\right)\left(2x+3\right)
Simplifica el término común x-1 con la propiedad distributiva.
x=1 x=-\frac{3}{2}
Para buscar soluciones de ecuaciones, resuelva x-1=0 y 2x+3=0.
2x^{2}+x-3=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-1±\sqrt{1^{2}-4\times 2\left(-3\right)}}{2\times 2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 2 por a, 1 por b y -3 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 2\left(-3\right)}}{2\times 2}
Obtiene el cuadrado de 1.
x=\frac{-1±\sqrt{1-8\left(-3\right)}}{2\times 2}
Multiplica -4 por 2.
x=\frac{-1±\sqrt{1+24}}{2\times 2}
Multiplica -8 por -3.
x=\frac{-1±\sqrt{25}}{2\times 2}
Suma 1 y 24.
x=\frac{-1±5}{2\times 2}
Toma la raíz cuadrada de 25.
x=\frac{-1±5}{4}
Multiplica 2 por 2.
x=\frac{4}{4}
Ahora, resuelva la ecuación x=\frac{-1±5}{4} dónde ± es más. Suma -1 y 5.
x=1
Divide 4 por 4.
x=-\frac{6}{4}
Ahora, resuelva la ecuación x=\frac{-1±5}{4} dónde ± es menos. Resta 5 de -1.
x=-\frac{3}{2}
Reduzca la fracción \frac{-6}{4} a su mínima expresión extrayendo y anulando 2.
x=1 x=-\frac{3}{2}
La ecuación ahora está resuelta.
2x^{2}+x-3=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
2x^{2}+x-3-\left(-3\right)=-\left(-3\right)
Suma 3 a los dos lados de la ecuación.
2x^{2}+x=-\left(-3\right)
Al restar -3 de su mismo valor, da como resultado 0.
2x^{2}+x=3
Resta -3 de 0.
\frac{2x^{2}+x}{2}=\frac{3}{2}
Divide los dos lados por 2.
x^{2}+\frac{1}{2}x=\frac{3}{2}
Al dividir por 2, se deshace la multiplicación por 2.
x^{2}+\frac{1}{2}x+\left(\frac{1}{4}\right)^{2}=\frac{3}{2}+\left(\frac{1}{4}\right)^{2}
Divida \frac{1}{2}, el coeficiente del término x, mediante la 2 de obtener \frac{1}{4}. A continuación, agregue el cuadrado de \frac{1}{4} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{3}{2}+\frac{1}{16}
Obtiene el cuadrado de \frac{1}{4}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}+\frac{1}{2}x+\frac{1}{16}=\frac{25}{16}
Suma \frac{3}{2} y \frac{1}{16}. Para hacerlo, obtiene un denominador común y suma los numeradores y, después, reduce la fracción a los términos mínimos (si es posible).
\left(x+\frac{1}{4}\right)^{2}=\frac{25}{16}
Factor x^{2}+\frac{1}{2}x+\frac{1}{16}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+\frac{1}{4}=\frac{5}{4} x+\frac{1}{4}=-\frac{5}{4}
Simplifica.
x=1 x=-\frac{3}{2}
Resta \frac{1}{4} en los dos lados de la ecuación.