Resolver para m
m=\frac{60\lambda }{29}
Resolver para λ
\lambda =\frac{29m}{60}
Compartir
Copiado en el Portapapeles
1450m=5\lambda \times 600
Multiplica los dos lados de la ecuación por 5.
1450m=3000\lambda
Multiplica 5 y 600 para obtener 3000.
\frac{1450m}{1450}=\frac{3000\lambda }{1450}
Divide los dos lados por 1450.
m=\frac{3000\lambda }{1450}
Al dividir por 1450, se deshace la multiplicación por 1450.
m=\frac{60\lambda }{29}
Divide 3000\lambda por 1450.
1450m=5\lambda \times 600
Multiplica los dos lados de la ecuación por 5.
1450m=3000\lambda
Multiplica 5 y 600 para obtener 3000.
3000\lambda =1450m
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
\frac{3000\lambda }{3000}=\frac{1450m}{3000}
Divide los dos lados por 3000.
\lambda =\frac{1450m}{3000}
Al dividir por 3000, se deshace la multiplicación por 3000.
\lambda =\frac{29m}{60}
Divide 1450m por 3000.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}