Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

10\times 18=x\left(3+x\right)
Suma 10 y 8 para obtener 18.
180=x\left(3+x\right)
Multiplica 10 y 18 para obtener 180.
180=3x+x^{2}
Usa la propiedad distributiva para multiplicar x por 3+x.
3x+x^{2}=180
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
3x+x^{2}-180=0
Resta 180 en los dos lados.
x^{2}+3x-180=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-3±\sqrt{3^{2}-4\left(-180\right)}}{2}
Esta ecuación tiene un formato estándar: ax^{2}+bx+c=0. Sustituya 1 por a, 3 por b y -180 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-180\right)}}{2}
Obtiene el cuadrado de 3.
x=\frac{-3±\sqrt{9+720}}{2}
Multiplica -4 por -180.
x=\frac{-3±\sqrt{729}}{2}
Suma 9 y 720.
x=\frac{-3±27}{2}
Toma la raíz cuadrada de 729.
x=\frac{24}{2}
Ahora resuelva la ecuación x=\frac{-3±27}{2} cuando ± es más. Suma -3 y 27.
x=12
Divide 24 por 2.
x=-\frac{30}{2}
Ahora resuelva la ecuación x=\frac{-3±27}{2} cuando ± es menos. Resta 27 de -3.
x=-15
Divide -30 por 2.
x=12 x=-15
La ecuación ahora está resuelta.
10\times 18=x\left(3+x\right)
Suma 10 y 8 para obtener 18.
180=x\left(3+x\right)
Multiplica 10 y 18 para obtener 180.
180=3x+x^{2}
Usa la propiedad distributiva para multiplicar x por 3+x.
3x+x^{2}=180
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
x^{2}+3x=180
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=180+\left(\frac{3}{2}\right)^{2}
Divida 3, el coeficiente del término x, por 2 para obtener \frac{3}{2}. A continuación, agregue el cuadrado de \frac{3}{2} a ambos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+3x+\frac{9}{4}=180+\frac{9}{4}
Obtiene el cuadrado de \frac{3}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}+3x+\frac{9}{4}=\frac{729}{4}
Suma 180 y \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{729}{4}
Factoriza x^{2}+3x+\frac{9}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{729}{4}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+\frac{3}{2}=\frac{27}{2} x+\frac{3}{2}=-\frac{27}{2}
Simplifica.
x=12 x=-15
Resta \frac{3}{2} en los dos lados de la ecuación.