Resolver para r (solución compleja)
r=-\frac{2e^{8i\theta }}{5\left(e^{iϕ+5i\theta }+e^{iϕ+11i\theta }-e^{iϕ+7i\theta }-e^{iϕ+9i\theta }+e^{5i\theta -iϕ}+e^{11i\theta -iϕ}-e^{7i\theta -iϕ}-e^{9i\theta -iϕ}\right)}
5e^{iϕ+7i\theta }+5e^{iϕ+9i\theta }-5e^{iϕ+5i\theta }-5e^{iϕ+11i\theta }+5e^{7i\theta -iϕ}+5e^{9i\theta -iϕ}-5e^{5i\theta -iϕ}-5e^{11i\theta -iϕ}\neq 0\text{ and }e^{iϕ+5i\theta }+e^{iϕ+11i\theta }-e^{iϕ+7i\theta }-e^{iϕ+9i\theta }+e^{5i\theta -iϕ}+e^{11i\theta -iϕ}-e^{7i\theta -iϕ}-e^{9i\theta -iϕ}\neq 0\text{ and }e^{-8i\theta }\left(e^{iϕ+5i\theta }+e^{iϕ+11i\theta }-e^{iϕ+7i\theta }-e^{iϕ+9i\theta }+e^{5i\theta -iϕ}+e^{11i\theta -iϕ}-e^{7i\theta -iϕ}-e^{9i\theta -iϕ}\right)\neq 0\text{ and }\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\pi n_{1}+\frac{\pi }{2}
Resolver para r
r=\frac{1}{40\cos(\theta )\cos(ϕ)\left(\sin(\theta )\right)^{2}}
\nexists n_{1}\in \mathrm{Z}\text{ : }ϕ=\pi n_{1}+\frac{\pi }{2}\text{ and }\nexists n_{2}\in \mathrm{Z}\text{ : }\theta =\frac{\pi n_{2}}{2}
Compartir
Copiado en el Portapapeles
1=20r\sin(2\theta )\sin(\theta )\cos(ϕ)
Multiplica 2 y 10 para obtener 20.
20r\sin(2\theta )\sin(\theta )\cos(ϕ)=1
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
20\sin(\theta )\sin(2\theta )\cos(ϕ)r=1
La ecuación está en formato estándar.
\frac{20\sin(\theta )\sin(2\theta )\cos(ϕ)r}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}=\frac{1}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}
Divide los dos lados por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
r=\frac{1}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}
Al dividir por 20\sin(2\theta )\sin(\theta )\cos(ϕ), se deshace la multiplicación por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
r=\frac{1}{40\cos(\theta )\cos(ϕ)\left(\sin(\theta )\right)^{2}}
Divide 1 por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
1=20r\sin(2\theta )\sin(\theta )\cos(ϕ)
Multiplica 2 y 10 para obtener 20.
20r\sin(2\theta )\sin(\theta )\cos(ϕ)=1
Intercambie los lados para que todos los términos de las variables estén en el lado izquierdo.
20\sin(\theta )\sin(2\theta )\cos(ϕ)r=1
La ecuación está en formato estándar.
\frac{20\sin(\theta )\sin(2\theta )\cos(ϕ)r}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}=\frac{1}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}
Divide los dos lados por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
r=\frac{1}{20\sin(\theta )\sin(2\theta )\cos(ϕ)}
Al dividir por 20\sin(2\theta )\sin(\theta )\cos(ϕ), se deshace la multiplicación por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
r=\frac{1}{40\cos(\theta )\cos(ϕ)\left(\sin(\theta )\right)^{2}}
Divide 1 por 20\sin(2\theta )\sin(\theta )\cos(ϕ).
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}