Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

-x^{2}-2x+3=0
Divide los dos lados por 3.
a+b=-2 ab=-3=-3
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como -x^{2}+ax+bx+3. Para buscar a y b, configure un sistema que se va a resolver.
a=1 b=-3
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. El único par como este es la solución de sistema.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Vuelva a escribir -x^{2}-2x+3 como \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Factoriza x en el primero y 3 en el segundo grupo.
\left(-x+1\right)\left(x+3\right)
Simplifica el término común -x+1 con la propiedad distributiva.
x=1 x=-3
Para buscar soluciones de ecuaciones, resuelva -x+1=0 y x+3=0.
-3x^{2}-6x+9=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\left(-3\right)\times 9}}{2\left(-3\right)}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace -3 por a, -6 por b y 9 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\left(-3\right)\times 9}}{2\left(-3\right)}
Obtiene el cuadrado de -6.
x=\frac{-\left(-6\right)±\sqrt{36+12\times 9}}{2\left(-3\right)}
Multiplica -4 por -3.
x=\frac{-\left(-6\right)±\sqrt{36+108}}{2\left(-3\right)}
Multiplica 12 por 9.
x=\frac{-\left(-6\right)±\sqrt{144}}{2\left(-3\right)}
Suma 36 y 108.
x=\frac{-\left(-6\right)±12}{2\left(-3\right)}
Toma la raíz cuadrada de 144.
x=\frac{6±12}{2\left(-3\right)}
El opuesto de -6 es 6.
x=\frac{6±12}{-6}
Multiplica 2 por -3.
x=\frac{18}{-6}
Ahora, resuelva la ecuación x=\frac{6±12}{-6} dónde ± es más. Suma 6 y 12.
x=-3
Divide 18 por -6.
x=-\frac{6}{-6}
Ahora, resuelva la ecuación x=\frac{6±12}{-6} dónde ± es menos. Resta 12 de 6.
x=1
Divide -6 por -6.
x=-3 x=1
La ecuación ahora está resuelta.
-3x^{2}-6x+9=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
-3x^{2}-6x+9-9=-9
Resta 9 en los dos lados de la ecuación.
-3x^{2}-6x=-9
Al restar 9 de su mismo valor, da como resultado 0.
\frac{-3x^{2}-6x}{-3}=-\frac{9}{-3}
Divide los dos lados por -3.
x^{2}+\left(-\frac{6}{-3}\right)x=-\frac{9}{-3}
Al dividir por -3, se deshace la multiplicación por -3.
x^{2}+2x=-\frac{9}{-3}
Divide -6 por -3.
x^{2}+2x=3
Divide -9 por -3.
x^{2}+2x+1^{2}=3+1^{2}
Divida 2, el coeficiente del término x, mediante la 2 de obtener 1. A continuación, agregue el cuadrado de 1 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+2x+1=3+1
Obtiene el cuadrado de 1.
x^{2}+2x+1=4
Suma 3 y 1.
\left(x+1\right)^{2}=4
Factor x^{2}+2x+1. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+1=2 x+1=-2
Simplifica.
x=1 x=-3
Resta 1 en los dos lados de la ecuación.