Calcular (solución compleja)
-8+3\sqrt{5}i\approx -8+6,708203932i
Parte real (solución compleja)
-8
Calcular
\text{Indeterminate}
Cuestionario
Arithmetic
5 problemas similares a:
- \sqrt { 1 } + \sqrt { - 80 } - \sqrt { 49 } - \sqrt { - 5 }
Compartir
Copiado en el Portapapeles
-1+\sqrt{-80}-\sqrt{49}-\sqrt{-5}
Calcule la raíz cuadrada de 1 y obtenga 1.
-1+4i\sqrt{5}-\sqrt{49}-\sqrt{-5}
Factorice -80=\left(4i\right)^{2}\times 5. Vuelva a escribir la raíz cuadrada del producto \sqrt{\left(4i\right)^{2}\times 5} como el producto de las raíces cuadradas \sqrt{\left(4i\right)^{2}}\sqrt{5}. Toma la raíz cuadrada de \left(4i\right)^{2}.
-1+4i\sqrt{5}-7-\sqrt{-5}
Calcule la raíz cuadrada de 49 y obtenga 7.
-8+4i\sqrt{5}-\sqrt{-5}
Resta 7 de -1 para obtener -8.
-8+4i\sqrt{5}-\sqrt{5}i
Factorice -5=5\left(-1\right). Vuelva a escribir la raíz cuadrada del producto \sqrt{5\left(-1\right)} como el producto de las raíces cuadradas \sqrt{5}\sqrt{-1}. Por definición, la raíz cuadrada de -1 es i.
-8+4i\sqrt{5}-i\sqrt{5}
Multiplica -1 y i para obtener -i.
-8+3i\sqrt{5}
Combina 4i\sqrt{5} y -i\sqrt{5} para obtener 3i\sqrt{5}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}