Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}})
Combina m_{A} y m_{A} para obtener 2m_{A}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )\right)}{2m_{A}})
Factorice las expresiones que aún no se hayan factorizado en \frac{m_{A}\left(\sin(\theta )-\mu _{A}\cos(\theta )\right)+m_{A}\left(\sin(\theta )-\mu _{B}\cos(\theta )\right)}{2m_{A}}.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+\sin(\theta )+\sin(\theta )}{2})
Anula m_{A} tanto en el numerador como en el denominador.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-m_{A}g\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2})
Combina \sin(\theta ) y \sin(\theta ) para obtener 2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{m_{A}\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)}{2}g)
Expresa m_{A}\times \frac{-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )}{2} como una única fracción.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g)
Usa la propiedad distributiva para multiplicar m_{A} por -\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta ).
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{\left(-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )\right)g}{2})
Expresa \frac{-m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta )}{2}g como una única fracción.
factor(\left(-\mu _{A}\right)m_{A}g\cos(\theta )-\frac{-m_{A}\mu _{A}\cos(\theta )g-m_{A}\mu _{B}\cos(\theta )g+2m_{A}\sin(\theta )g}{2})
Usa la propiedad distributiva para multiplicar -m_{A}\mu _{A}\cos(\theta )-m_{A}\mu _{B}\cos(\theta )+2m_{A}\sin(\theta ) por g.
\frac{m_{A}g\left(-2\mu _{A}\cos(\theta )-\left(-\mu _{A}\cos(\theta )-\mu _{B}\cos(\theta )+2\sin(\theta )\right)\right)}{2}
Simplifica \frac{1}{2}.