Resolver para k
k=-\frac{x\left(x-6\right)}{2\left(x-4\right)}
x\neq 4
Resolver para x
x=\sqrt{k^{2}+2k+9}-k+3
x=-\sqrt{k^{2}+2k+9}-k+3
Gráfico
Compartir
Copiado en el Portapapeles
-\frac{1}{2}x+k=\left(-\frac{1}{2}x-k\right)\left(x-5\right)
Usa la propiedad distributiva para multiplicar -\frac{1}{2} por x+2k.
-\frac{1}{2}x+k=-\frac{1}{2}x^{2}+\frac{5}{2}x-kx+5k
Usa la propiedad distributiva para multiplicar -\frac{1}{2}x-k por x-5.
-\frac{1}{2}x+k+kx=-\frac{1}{2}x^{2}+\frac{5}{2}x+5k
Agrega kx a ambos lados.
-\frac{1}{2}x+k+kx-5k=-\frac{1}{2}x^{2}+\frac{5}{2}x
Resta 5k en los dos lados.
-\frac{1}{2}x-4k+kx=-\frac{1}{2}x^{2}+\frac{5}{2}x
Combina k y -5k para obtener -4k.
-4k+kx=-\frac{1}{2}x^{2}+\frac{5}{2}x+\frac{1}{2}x
Agrega \frac{1}{2}x a ambos lados.
-4k+kx=-\frac{1}{2}x^{2}+3x
Combina \frac{5}{2}x y \frac{1}{2}x para obtener 3x.
\left(-4+x\right)k=-\frac{1}{2}x^{2}+3x
Combina todos los términos que contienen k.
\left(x-4\right)k=-\frac{x^{2}}{2}+3x
La ecuación está en formato estándar.
\frac{\left(x-4\right)k}{x-4}=\frac{x\left(6-x\right)}{2\left(x-4\right)}
Divide los dos lados por -4+x.
k=\frac{x\left(6-x\right)}{2\left(x-4\right)}
Al dividir por -4+x, se deshace la multiplicación por -4+x.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}