Resolver para a_75
a_{75}=\frac{1}{12x}
x\neq 0
Resolver para x
x=\frac{1}{12a_{75}}
a_{75}\neq 0
Gráfico
Compartir
Copiado en el Portapapeles
-\frac{3}{4}+9xa_{75}=0
Multiplica 0 y 5 para obtener 0.
9xa_{75}=\frac{3}{4}
Agrega \frac{3}{4} a ambos lados. Cualquier valor más cero da como resultado su mismo valor.
\frac{9xa_{75}}{9x}=\frac{\frac{3}{4}}{9x}
Divide los dos lados por 9x.
a_{75}=\frac{\frac{3}{4}}{9x}
Al dividir por 9x, se deshace la multiplicación por 9x.
a_{75}=\frac{1}{12x}
Divide \frac{3}{4} por 9x.
-\frac{3}{4}+9xa_{75}=0
Multiplica 0 y 5 para obtener 0.
9xa_{75}=\frac{3}{4}
Agrega \frac{3}{4} a ambos lados. Cualquier valor más cero da como resultado su mismo valor.
9a_{75}x=\frac{3}{4}
La ecuación está en formato estándar.
\frac{9a_{75}x}{9a_{75}}=\frac{\frac{3}{4}}{9a_{75}}
Divide los dos lados por 9a_{75}.
x=\frac{\frac{3}{4}}{9a_{75}}
Al dividir por 9a_{75}, se deshace la multiplicación por 9a_{75}.
x=\frac{1}{12a_{75}}
Divide \frac{3}{4} por 9a_{75}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}