Saltar al contenido principal
Calcular
Tick mark Image
Factorizar
Tick mark Image

Compartir

-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suma \frac{1}{3} y \frac{7}{9} para obtener \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{10}{9} a la potencia de 2 y obtiene \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{1}{2} de 1 para obtener \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{1}{2} a la potencia de 2 y obtiene \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula -2 a la potencia de 3 y obtiene -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{1}{4} y -8 para obtener -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{3}{2} de -2 para obtener -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Divide \frac{100}{81} por -\frac{7}{2} al multiplicar \frac{100}{81} por el recíproco de -\frac{7}{2}.
-\left(-\frac{200}{567}\right)-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{100}{81} y -\frac{2}{7} para obtener -\frac{200}{567}.
\frac{200}{567}-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
El opuesto de -\frac{200}{567} es \frac{200}{567}.
\frac{200}{567}-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula -\frac{1}{6} a la potencia de 2 y obtiene \frac{1}{36}.
\frac{737}{2268}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{1}{36} de \frac{200}{567} para obtener \frac{737}{2268}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{1}{5} de \frac{1}{4} para obtener \frac{1}{20}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{2}{5} de 1 para obtener \frac{3}{5}.
\frac{737}{2268}+\frac{\frac{1}{20}}{\frac{9}{25}}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{3}{5} a la potencia de 2 y obtiene \frac{9}{25}.
\frac{737}{2268}+\frac{1}{20}\times \frac{25}{9}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Divide \frac{1}{20} por \frac{9}{25} al multiplicar \frac{1}{20} por el recíproco de \frac{9}{25}.
\frac{737}{2268}+\frac{5}{36}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{1}{20} y \frac{25}{9} para obtener \frac{5}{36}.
\frac{263}{567}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suma \frac{737}{2268} y \frac{5}{36} para obtener \frac{263}{567}.
\frac{263}{567}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{2}{9} de \frac{1}{3} para obtener \frac{1}{9}.
\frac{263}{567}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Resta \frac{15}{8} de \frac{1}{8} para obtener -\frac{7}{4}.
\frac{263}{567}-\frac{1}{9}\left(-\frac{4}{7}\right)
Divide \frac{1}{9} por -\frac{7}{4} al multiplicar \frac{1}{9} por el recíproco de -\frac{7}{4}.
\frac{263}{567}-\left(-\frac{4}{63}\right)
Multiplica \frac{1}{9} y -\frac{4}{7} para obtener -\frac{4}{63}.
\frac{263}{567}+\frac{4}{63}
El opuesto de -\frac{4}{63} es \frac{4}{63}.
\frac{299}{567}
Suma \frac{263}{567} y \frac{4}{63} para obtener \frac{299}{567}.