Calcular
\frac{3}{7}\approx 0,428571429
Factorizar
\frac{3}{7} = 0,42857142857142855
Compartir
Copiado en el Portapapeles
-\frac{\left(\frac{10}{9}\right)^{2}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suma \frac{1}{3} y \frac{7}{9} para obtener \frac{10}{9}.
-\frac{\frac{100}{81}}{\left(1-\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{10}{9} a la potencia de 2 y obtiene \frac{100}{81}.
-\frac{\frac{100}{81}}{\left(\frac{1}{2}\right)^{2}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{1}{2} de 1 para obtener \frac{1}{2}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-2\right)^{3}-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{1}{2} a la potencia de 2 y obtiene \frac{1}{4}.
-\frac{\frac{100}{81}}{\frac{1}{4}\left(-8\right)-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula -2 a la potencia de 3 y obtiene -8.
-\frac{\frac{100}{81}}{-2-\frac{3}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{1}{4} y -8 para obtener -2.
-\frac{\frac{100}{81}}{-\frac{7}{2}}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{3}{2} de -2 para obtener -\frac{7}{2}.
-\frac{100}{81}\left(-\frac{2}{7}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Divide \frac{100}{81} por -\frac{7}{2} al multiplicar \frac{100}{81} por el recíproco de -\frac{7}{2}.
-\left(-\frac{200}{567}\right)+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{100}{81} y -\frac{2}{7} para obtener -\frac{200}{567}.
\frac{200}{567}+\left(-\left(-\frac{1}{6}\right)^{2}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
El opuesto de -\frac{200}{567} es \frac{200}{567}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{4}-\frac{1}{5}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula -\frac{1}{6} a la potencia de 2 y obtiene \frac{1}{36}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(1-\frac{2}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{1}{5} de \frac{1}{4} para obtener \frac{1}{20}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\left(\frac{3}{5}\right)^{2}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{2}{5} de 1 para obtener \frac{3}{5}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{\frac{1}{20}}{\frac{9}{25}}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{3}{5} a la potencia de 2 y obtiene \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{1}{20}\times \frac{25}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Divide \frac{1}{20} por \frac{9}{25} al multiplicar \frac{1}{20} por el recíproco de \frac{9}{25}.
\frac{200}{567}+\left(-\frac{1}{36}+\frac{5}{36}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Multiplica \frac{1}{20} y \frac{25}{9} para obtener \frac{5}{36}.
\frac{200}{567}+\left(\frac{1}{9}\right)^{2}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suma -\frac{1}{36} y \frac{5}{36} para obtener \frac{1}{9}.
\frac{200}{567}+\frac{1}{81}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Calcula \frac{1}{9} a la potencia de 2 y obtiene \frac{1}{81}.
\frac{23}{63}-\frac{\frac{1}{3}-\frac{2}{9}}{\frac{1}{8}-\frac{15}{8}}
Suma \frac{200}{567} y \frac{1}{81} para obtener \frac{23}{63}.
\frac{23}{63}-\frac{\frac{1}{9}}{\frac{1}{8}-\frac{15}{8}}
Resta \frac{2}{9} de \frac{1}{3} para obtener \frac{1}{9}.
\frac{23}{63}-\frac{\frac{1}{9}}{-\frac{7}{4}}
Resta \frac{15}{8} de \frac{1}{8} para obtener -\frac{7}{4}.
\frac{23}{63}-\frac{1}{9}\left(-\frac{4}{7}\right)
Divide \frac{1}{9} por -\frac{7}{4} al multiplicar \frac{1}{9} por el recíproco de -\frac{7}{4}.
\frac{23}{63}-\left(-\frac{4}{63}\right)
Multiplica \frac{1}{9} y -\frac{4}{7} para obtener -\frac{4}{63}.
\frac{23}{63}+\frac{4}{63}
El opuesto de -\frac{4}{63} es \frac{4}{63}.
\frac{3}{7}
Suma \frac{23}{63} y \frac{4}{63} para obtener \frac{3}{7}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}