Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

x^{2}-3x+2+x-2=25
Usa la propiedad distributiva para multiplicar x-1 por x-2 y combinar términos semejantes.
x^{2}-2x+2-2=25
Combina -3x y x para obtener -2x.
x^{2}-2x=25
Resta 2 de 2 para obtener 0.
x^{2}-2x-25=0
Resta 25 en los dos lados.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-25\right)}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, -2 por b y -25 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-25\right)}}{2}
Obtiene el cuadrado de -2.
x=\frac{-\left(-2\right)±\sqrt{4+100}}{2}
Multiplica -4 por -25.
x=\frac{-\left(-2\right)±\sqrt{104}}{2}
Suma 4 y 100.
x=\frac{-\left(-2\right)±2\sqrt{26}}{2}
Toma la raíz cuadrada de 104.
x=\frac{2±2\sqrt{26}}{2}
El opuesto de -2 es 2.
x=\frac{2\sqrt{26}+2}{2}
Ahora, resuelva la ecuación x=\frac{2±2\sqrt{26}}{2} dónde ± es más. Suma 2 y 2\sqrt{26}.
x=\sqrt{26}+1
Divide 2+2\sqrt{26} por 2.
x=\frac{2-2\sqrt{26}}{2}
Ahora, resuelva la ecuación x=\frac{2±2\sqrt{26}}{2} dónde ± es menos. Resta 2\sqrt{26} de 2.
x=1-\sqrt{26}
Divide 2-2\sqrt{26} por 2.
x=\sqrt{26}+1 x=1-\sqrt{26}
La ecuación ahora está resuelta.
x^{2}-3x+2+x-2=25
Usa la propiedad distributiva para multiplicar x-1 por x-2 y combinar términos semejantes.
x^{2}-2x+2-2=25
Combina -3x y x para obtener -2x.
x^{2}-2x=25
Resta 2 de 2 para obtener 0.
x^{2}-2x+1=25+1
Divida -2, el coeficiente del término x, mediante la 2 de obtener -1. A continuación, agregue el cuadrado de -1 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-2x+1=26
Suma 25 y 1.
\left(x-1\right)^{2}=26
Factor x^{2}-2x+1. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{26}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-1=\sqrt{26} x-1=-\sqrt{26}
Simplifica.
x=\sqrt{26}+1 x=1-\sqrt{26}
Suma 1 a los dos lados de la ecuación.