Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

x^{2}-4x+4+1=2x-3
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Suma 4 y 1 para obtener 5.
x^{2}-4x+5-2x=-3
Resta 2x en los dos lados.
x^{2}-6x+5=-3
Combina -4x y -2x para obtener -6x.
x^{2}-6x+5+3=0
Agrega 3 a ambos lados.
x^{2}-6x+8=0
Suma 5 y 3 para obtener 8.
a+b=-6 ab=8
Para resolver la ecuación, factor x^{2}-6x+8 utilizar la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para buscar a y b, configure un sistema que se va a resolver.
-1,-8 -2,-4
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 8.
-1-8=-9 -2-4=-6
Calcule la suma de cada par.
a=-4 b=-2
La solución es el par que proporciona suma -6.
\left(x-4\right)\left(x-2\right)
Vuelve a escribir la expresión factorizada \left(x+a\right)\left(x+b\right) con los valores obtenidos.
x=4 x=2
Para buscar soluciones de ecuaciones, resuelva x-4=0 y x-2=0.
x^{2}-4x+4+1=2x-3
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Suma 4 y 1 para obtener 5.
x^{2}-4x+5-2x=-3
Resta 2x en los dos lados.
x^{2}-6x+5=-3
Combina -4x y -2x para obtener -6x.
x^{2}-6x+5+3=0
Agrega 3 a ambos lados.
x^{2}-6x+8=0
Suma 5 y 3 para obtener 8.
a+b=-6 ab=1\times 8=8
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx+8. Para buscar a y b, configure un sistema que se va a resolver.
-1,-8 -2,-4
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 8.
-1-8=-9 -2-4=-6
Calcule la suma de cada par.
a=-4 b=-2
La solución es el par que proporciona suma -6.
\left(x^{2}-4x\right)+\left(-2x+8\right)
Vuelva a escribir x^{2}-6x+8 como \left(x^{2}-4x\right)+\left(-2x+8\right).
x\left(x-4\right)-2\left(x-4\right)
Factoriza x en el primero y -2 en el segundo grupo.
\left(x-4\right)\left(x-2\right)
Simplifica el término común x-4 con la propiedad distributiva.
x=4 x=2
Para buscar soluciones de ecuaciones, resuelva x-4=0 y x-2=0.
x^{2}-4x+4+1=2x-3
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Suma 4 y 1 para obtener 5.
x^{2}-4x+5-2x=-3
Resta 2x en los dos lados.
x^{2}-6x+5=-3
Combina -4x y -2x para obtener -6x.
x^{2}-6x+5+3=0
Agrega 3 a ambos lados.
x^{2}-6x+8=0
Suma 5 y 3 para obtener 8.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 8}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, -6 por b y 8 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 8}}{2}
Obtiene el cuadrado de -6.
x=\frac{-\left(-6\right)±\sqrt{36-32}}{2}
Multiplica -4 por 8.
x=\frac{-\left(-6\right)±\sqrt{4}}{2}
Suma 36 y -32.
x=\frac{-\left(-6\right)±2}{2}
Toma la raíz cuadrada de 4.
x=\frac{6±2}{2}
El opuesto de -6 es 6.
x=\frac{8}{2}
Ahora, resuelva la ecuación x=\frac{6±2}{2} dónde ± es más. Suma 6 y 2.
x=4
Divide 8 por 2.
x=\frac{4}{2}
Ahora, resuelva la ecuación x=\frac{6±2}{2} dónde ± es menos. Resta 2 de 6.
x=2
Divide 4 por 2.
x=4 x=2
La ecuación ahora está resuelta.
x^{2}-4x+4+1=2x-3
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-2\right)^{2}.
x^{2}-4x+5=2x-3
Suma 4 y 1 para obtener 5.
x^{2}-4x+5-2x=-3
Resta 2x en los dos lados.
x^{2}-6x+5=-3
Combina -4x y -2x para obtener -6x.
x^{2}-6x=-3-5
Resta 5 en los dos lados.
x^{2}-6x=-8
Resta 5 de -3 para obtener -8.
x^{2}-6x+\left(-3\right)^{2}=-8+\left(-3\right)^{2}
Divida -6, el coeficiente del término x, mediante la 2 de obtener -3. A continuación, agregue el cuadrado de -3 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-6x+9=-8+9
Obtiene el cuadrado de -3.
x^{2}-6x+9=1
Suma -8 y 9.
\left(x-3\right)^{2}=1
Factor x^{2}-6x+9. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{1}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-3=1 x-3=-1
Simplifica.
x=4 x=2
Suma 3 a los dos lados de la ecuación.