Calcular
-1
Compartir
Copiado en el Portapapeles
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+\tan(45)}{1-\tan(60)\tan(45)}
Obtenga el valor de \tan(60) de la tabla de valores trigonométricos.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\tan(60)\tan(45)}
Obtenga el valor de \tan(45) de la tabla de valores trigonométricos.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\tan(45)}
Obtenga el valor de \tan(60) de la tabla de valores trigonométricos.
\left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1}
Obtenga el valor de \tan(45) de la tabla de valores trigonométricos.
\frac{\left(2-\sqrt{3}\right)\left(\sqrt{3}+1\right)}{1-\sqrt{3}\times 1}
Expresa \left(2-\sqrt{3}\right)\times \frac{\sqrt{3}+1}{1-\sqrt{3}\times 1} como una única fracción.
\frac{\sqrt{3}+2-\left(\sqrt{3}\right)^{2}}{1-\sqrt{3}\times 1}
Usa la propiedad distributiva para multiplicar 2-\sqrt{3} por \sqrt{3}+1 y combinar términos semejantes.
\frac{\sqrt{3}+2-3}{1-\sqrt{3}\times 1}
El cuadrado de \sqrt{3} es 3.
\frac{\sqrt{3}-1}{1-\sqrt{3}\times 1}
Resta 3 de 2 para obtener -1.
\frac{-\left(-\sqrt{3}+1\right)}{-\sqrt{3}+1}
Extraiga el signo negativo en \sqrt{3}-1.
-1
Anula -\sqrt{3}+1 tanto en el numerador como en el denominador.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}