Calcular
-\frac{9}{4}=-2,25
Factorizar
-\frac{9}{4} = -2\frac{1}{4} = -2,25
Compartir
Copiado en el Portapapeles
\left(\frac{2}{3}\right)^{-7}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume -4 y -3 para obtener -7.
\frac{2187}{128}\left(-\frac{3}{2}\right)^{-5}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Calcula \frac{2}{3} a la potencia de -7 y obtiene \frac{2187}{128}.
\frac{2187}{128}\left(-\frac{32}{243}\right)+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Calcula -\frac{3}{2} a la potencia de -5 y obtiene -\frac{32}{243}.
-\frac{9}{4}+8\left(\left(2-\frac{1}{4}\right)\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Multiplica \frac{2187}{128} y -\frac{32}{243} para obtener -\frac{9}{4}.
-\frac{9}{4}+8\left(\frac{7}{4}\times \frac{1}{7}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Resta \frac{1}{4} de 2 para obtener \frac{7}{4}.
-\frac{9}{4}+8\left(\frac{1}{4}-\frac{3}{4}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Multiplica \frac{7}{4} y \frac{1}{7} para obtener \frac{1}{4}.
-\frac{9}{4}+8\left(-\frac{1}{2}\right)+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Resta \frac{3}{4} de \frac{1}{4} para obtener -\frac{1}{2}.
-\frac{9}{4}-4+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Multiplica 8 y -\frac{1}{2} para obtener -4.
-\frac{25}{4}+\left(\left(-\frac{3}{2}\right)^{2}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Resta 4 de -\frac{9}{4} para obtener -\frac{25}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \left(\frac{1}{3}\right)^{2}\right)^{-1}
Calcula -\frac{3}{2} a la potencia de 2 y obtiene \frac{9}{4}.
-\frac{25}{4}+\left(\frac{9}{4}\times \frac{1}{9}\right)^{-1}
Calcula \frac{1}{3} a la potencia de 2 y obtiene \frac{1}{9}.
-\frac{25}{4}+\left(\frac{1}{4}\right)^{-1}
Multiplica \frac{9}{4} y \frac{1}{9} para obtener \frac{1}{4}.
-\frac{25}{4}+4
Calcula \frac{1}{4} a la potencia de -1 y obtiene 4.
-\frac{9}{4}
Suma -\frac{25}{4} y 4 para obtener -\frac{9}{4}.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}