Saltar al contenido principal
Factorizar
Tick mark Image
Calcular
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=-2 ab=1\left(-3\right)=-3
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-3. Para buscar a y b, configure un sistema que se va a resolver.
a=-3 b=1
Dado que ab es negativo, a y b tienen los signos opuestos. Dado que a+b es negativa, el número negativo tiene un valor absoluto mayor que el positivo. El único par como este es la solución de sistema.
\left(x^{2}-3x\right)+\left(x-3\right)
Vuelva a escribir x^{2}-2x-3 como \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Simplifica x en x^{2}-3x.
\left(x-3\right)\left(x+1\right)
Simplifica el término común x-3 con la propiedad distributiva.
x^{2}-2x-3=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-3\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-3\right)}}{2}
Obtiene el cuadrado de -2.
x=\frac{-\left(-2\right)±\sqrt{4+12}}{2}
Multiplica -4 por -3.
x=\frac{-\left(-2\right)±\sqrt{16}}{2}
Suma 4 y 12.
x=\frac{-\left(-2\right)±4}{2}
Toma la raíz cuadrada de 16.
x=\frac{2±4}{2}
El opuesto de -2 es 2.
x=\frac{6}{2}
Ahora resuelva la ecuación x=\frac{2±4}{2} cuando ± es más. Suma 2 y 4.
x=3
Divide 6 por 2.
x=-\frac{2}{2}
Ahora resuelva la ecuación x=\frac{2±4}{2} cuando ± es menos. Resta 4 de 2.
x=-1
Divide -2 por 2.
x^{2}-2x-3=\left(x-3\right)\left(x-\left(-1\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 3 por x_{1} y -1 por x_{2}.
x^{2}-2x-3=\left(x-3\right)\left(x+1\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.