Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=1 ab=-2
Para resolver la ecuación, factor x^{2}+x-2 utilizar la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para buscar a y b, configure un sistema que se va a resolver.
a=-1 b=2
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. El único par como este es la solución de sistema.
\left(x-1\right)\left(x+2\right)
Vuelve a escribir la expresión factorizada \left(x+a\right)\left(x+b\right) con los valores obtenidos.
x=1 x=-2
Para buscar soluciones de ecuaciones, resuelva x-1=0 y x+2=0.
a+b=1 ab=1\left(-2\right)=-2
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx-2. Para buscar a y b, configure un sistema que se va a resolver.
a=-1 b=2
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. El único par como este es la solución de sistema.
\left(x^{2}-x\right)+\left(2x-2\right)
Vuelva a escribir x^{2}+x-2 como \left(x^{2}-x\right)+\left(2x-2\right).
x\left(x-1\right)+2\left(x-1\right)
Simplifica x en el primer grupo y 2 en el segundo.
\left(x-1\right)\left(x+2\right)
Simplifica el término común x-1 con la propiedad distributiva.
x=1 x=-2
Para buscar soluciones de ecuaciones, resuelva x-1=0 y x+2=0.
x^{2}+x-2=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-1±\sqrt{1^{2}-4\left(-2\right)}}{2}
Esta ecuación tiene un formato estándar: ax^{2}+bx+c=0. Sustituya 1 por a, 1 por b y -2 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\left(-2\right)}}{2}
Obtiene el cuadrado de 1.
x=\frac{-1±\sqrt{1+8}}{2}
Multiplica -4 por -2.
x=\frac{-1±\sqrt{9}}{2}
Suma 1 y 8.
x=\frac{-1±3}{2}
Toma la raíz cuadrada de 9.
x=\frac{2}{2}
Ahora resuelva la ecuación x=\frac{-1±3}{2} cuando ± es más. Suma -1 y 3.
x=1
Divide 2 por 2.
x=-\frac{4}{2}
Ahora resuelva la ecuación x=\frac{-1±3}{2} cuando ± es menos. Resta 3 de -1.
x=-2
Divide -4 por 2.
x=1 x=-2
La ecuación ahora está resuelta.
x^{2}+x-2=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
x^{2}+x-2-\left(-2\right)=-\left(-2\right)
Suma 2 a los dos lados de la ecuación.
x^{2}+x=-\left(-2\right)
Al restar -2 de su mismo valor, da como resultado 0.
x^{2}+x=2
Resta -2 de 0.
x^{2}+x+\left(\frac{1}{2}\right)^{2}=2+\left(\frac{1}{2}\right)^{2}
Divida 1, el coeficiente del término x, por 2 para obtener \frac{1}{2}. A continuación, agregue el cuadrado de \frac{1}{2} a ambos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+x+\frac{1}{4}=2+\frac{1}{4}
Obtiene el cuadrado de \frac{1}{2}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}+x+\frac{1}{4}=\frac{9}{4}
Suma 2 y \frac{1}{4}.
\left(x+\frac{1}{2}\right)^{2}=\frac{9}{4}
Factoriza x^{2}+x+\frac{1}{4}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+\frac{1}{2}=\frac{3}{2} x+\frac{1}{2}=-\frac{3}{2}
Simplifica.
x=1 x=-2
Resta \frac{1}{2} en los dos lados de la ecuación.