Factorizar
\left(x-7\right)\left(x+39\right)
Calcular
\left(x-7\right)\left(x+39\right)
Gráfico
Compartir
Copiado en el Portapapeles
a+b=32 ab=1\left(-273\right)=-273
Factoriza la expresión agrupando. Primero, es necesario volver a escribir la expresión como x^{2}+ax+bx-273. Para buscar a y b, configure un sistema que se va a resolver.
-1,273 -3,91 -7,39 -13,21
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -273.
-1+273=272 -3+91=88 -7+39=32 -13+21=8
Calcule la suma de cada par.
a=-7 b=39
La solución es el par que proporciona suma 32.
\left(x^{2}-7x\right)+\left(39x-273\right)
Vuelva a escribir x^{2}+32x-273 como \left(x^{2}-7x\right)+\left(39x-273\right).
x\left(x-7\right)+39\left(x-7\right)
Simplifica x en el primer grupo y 39 en el segundo.
\left(x-7\right)\left(x+39\right)
Simplifica el término común x-7 con la propiedad distributiva.
x^{2}+32x-273=0
Puede factorizar el polinomio cuadrático utilizando la transformación ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), donde x_{1} y x_{2} son las soluciones de la ecuación cuadrática ax^{2}+bx+c=0.
x=\frac{-32±\sqrt{32^{2}-4\left(-273\right)}}{2}
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-32±\sqrt{1024-4\left(-273\right)}}{2}
Obtiene el cuadrado de 32.
x=\frac{-32±\sqrt{1024+1092}}{2}
Multiplica -4 por -273.
x=\frac{-32±\sqrt{2116}}{2}
Suma 1024 y 1092.
x=\frac{-32±46}{2}
Toma la raíz cuadrada de 2116.
x=\frac{14}{2}
Ahora resuelva la ecuación x=\frac{-32±46}{2} cuando ± es más. Suma -32 y 46.
x=7
Divide 14 por 2.
x=-\frac{78}{2}
Ahora resuelva la ecuación x=\frac{-32±46}{2} cuando ± es menos. Resta 46 de -32.
x=-39
Divide -78 por 2.
x^{2}+32x-273=\left(x-7\right)\left(x-\left(-39\right)\right)
Factorice la expresión original con ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Sustituya 7 por x_{1} y -39 por x_{2}.
x^{2}+32x-273=\left(x-7\right)\left(x+39\right)
Simplifica todas las expresiones con la forma p-\left(-q\right) a p+q.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}