Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

a+b=2 ab=-15
Para resolver la ecuación, factor x^{2}+2x-15 utilizar la fórmula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). Para buscar a y b, configure un sistema que se va a resolver.
-1,15 -3,5
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -15.
-1+15=14 -3+5=2
Calcule la suma de cada par.
a=-3 b=5
La solución es el par que proporciona suma 2.
\left(x-3\right)\left(x+5\right)
Vuelve a escribir la expresión factorizada \left(x+a\right)\left(x+b\right) con los valores obtenidos.
x=3 x=-5
Para buscar soluciones de ecuaciones, resuelva x-3=0 y x+5=0.
a+b=2 ab=1\left(-15\right)=-15
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx-15. Para buscar a y b, configure un sistema que se va a resolver.
-1,15 -3,5
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. Mostrar todos los pares de números enteros que den como producto -15.
-1+15=14 -3+5=2
Calcule la suma de cada par.
a=-3 b=5
La solución es el par que proporciona suma 2.
\left(x^{2}-3x\right)+\left(5x-15\right)
Vuelva a escribir x^{2}+2x-15 como \left(x^{2}-3x\right)+\left(5x-15\right).
x\left(x-3\right)+5\left(x-3\right)
Factoriza x en el primero y 5 en el segundo grupo.
\left(x-3\right)\left(x+5\right)
Simplifica el término común x-3 con la propiedad distributiva.
x=3 x=-5
Para buscar soluciones de ecuaciones, resuelva x-3=0 y x+5=0.
x^{2}+2x-15=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-2±\sqrt{2^{2}-4\left(-15\right)}}{2}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 1 por a, 2 por b y -15 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-15\right)}}{2}
Obtiene el cuadrado de 2.
x=\frac{-2±\sqrt{4+60}}{2}
Multiplica -4 por -15.
x=\frac{-2±\sqrt{64}}{2}
Suma 4 y 60.
x=\frac{-2±8}{2}
Toma la raíz cuadrada de 64.
x=\frac{6}{2}
Ahora, resuelva la ecuación x=\frac{-2±8}{2} dónde ± es más. Suma -2 y 8.
x=3
Divide 6 por 2.
x=-\frac{10}{2}
Ahora, resuelva la ecuación x=\frac{-2±8}{2} dónde ± es menos. Resta 8 de -2.
x=-5
Divide -10 por 2.
x=3 x=-5
La ecuación ahora está resuelta.
x^{2}+2x-15=0
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
Suma 15 a los dos lados de la ecuación.
x^{2}+2x=-\left(-15\right)
Al restar -15 de su mismo valor, da como resultado 0.
x^{2}+2x=15
Resta -15 de 0.
x^{2}+2x+1^{2}=15+1^{2}
Divida 2, el coeficiente del término x, mediante la 2 de obtener 1. A continuación, agregue el cuadrado de 1 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}+2x+1=15+1
Obtiene el cuadrado de 1.
x^{2}+2x+1=16
Suma 15 y 1.
\left(x+1\right)^{2}=16
Factor x^{2}+2x+1. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{16}
Toma la raíz cuadrada de los dos lados de la ecuación.
x+1=4 x+1=-4
Simplifica.
x=3 x=-5
Resta 1 en los dos lados de la ecuación.