Calcular
4
Factorizar
2^{2}
Compartir
Copiado en el Portapapeles
\left(\sqrt{3}\right)^{2}-2\sqrt{3}+1+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(\sqrt{3}-1\right)^{2}.
3-2\sqrt{3}+1+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
El cuadrado de \sqrt{3} es 3.
4-2\sqrt{3}+\left(2\sqrt{3}-1\right)^{2}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 3 y 1 para obtener 4.
4-2\sqrt{3}+4\left(\sqrt{3}\right)^{2}-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(2\sqrt{3}-1\right)^{2}.
4-2\sqrt{3}+4\times 3-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
El cuadrado de \sqrt{3} es 3.
4-2\sqrt{3}+12-4\sqrt{3}+1+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Multiplica 4 y 3 para obtener 12.
4-2\sqrt{3}+13-4\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 12 y 1 para obtener 13.
17-2\sqrt{3}-4\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 4 y 13 para obtener 17.
17-6\sqrt{3}+\left(\sqrt{3}-2\right)^{2}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combina -2\sqrt{3} y -4\sqrt{3} para obtener -6\sqrt{3}.
17-6\sqrt{3}+\left(\sqrt{3}\right)^{2}-4\sqrt{3}+4-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(\sqrt{3}-2\right)^{2}.
17-6\sqrt{3}+3-4\sqrt{3}+4-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
El cuadrado de \sqrt{3} es 3.
17-6\sqrt{3}+7-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 3 y 4 para obtener 7.
24-6\sqrt{3}-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 17 y 7 para obtener 24.
24-10\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combina -6\sqrt{3} y -4\sqrt{3} para obtener -10\sqrt{3}.
24-10\sqrt{3}-\left(2\left(\sqrt{3}\right)^{2}-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Usa la propiedad distributiva para multiplicar \sqrt{3}-1 por 2\sqrt{3}-1 y combinar términos semejantes.
24-10\sqrt{3}-\left(2\times 3-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
El cuadrado de \sqrt{3} es 3.
24-10\sqrt{3}-\left(6-3\sqrt{3}+1\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Multiplica 2 y 3 para obtener 6.
24-10\sqrt{3}-\left(7-3\sqrt{3}\right)-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 6 y 1 para obtener 7.
24-10\sqrt{3}-7+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Para calcular el opuesto de 7-3\sqrt{3}, calcule el opuesto de cada término.
17-10\sqrt{3}+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Resta 7 de 24 para obtener 17.
17-7\sqrt{3}-\left(\sqrt{3}-1\right)\left(\sqrt{3}-2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combina -10\sqrt{3} y 3\sqrt{3} para obtener -7\sqrt{3}.
17-7\sqrt{3}-\left(\left(\sqrt{3}\right)^{2}-3\sqrt{3}+2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Usa la propiedad distributiva para multiplicar \sqrt{3}-1 por \sqrt{3}-2 y combinar términos semejantes.
17-7\sqrt{3}-\left(3-3\sqrt{3}+2\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
El cuadrado de \sqrt{3} es 3.
17-7\sqrt{3}-\left(5-3\sqrt{3}\right)-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Suma 3 y 2 para obtener 5.
17-7\sqrt{3}-5+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Para calcular el opuesto de 5-3\sqrt{3}, calcule el opuesto de cada término.
12-7\sqrt{3}+3\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Resta 5 de 17 para obtener 12.
12-4\sqrt{3}-\left(\sqrt{3}-1\right)\left(2\sqrt{3}-2\right)
Combina -7\sqrt{3} y 3\sqrt{3} para obtener -4\sqrt{3}.
12-4\sqrt{3}-\left(2\left(\sqrt{3}\right)^{2}-4\sqrt{3}+2\right)
Usa la propiedad distributiva para multiplicar \sqrt{3}-1 por 2\sqrt{3}-2 y combinar términos semejantes.
12-4\sqrt{3}-\left(2\times 3-4\sqrt{3}+2\right)
El cuadrado de \sqrt{3} es 3.
12-4\sqrt{3}-\left(6-4\sqrt{3}+2\right)
Multiplica 2 y 3 para obtener 6.
12-4\sqrt{3}-\left(8-4\sqrt{3}\right)
Suma 6 y 2 para obtener 8.
12-4\sqrt{3}-8+4\sqrt{3}
Para calcular el opuesto de 8-4\sqrt{3}, calcule el opuesto de cada término.
4-4\sqrt{3}+4\sqrt{3}
Resta 8 de 12 para obtener 4.
4
Combina -4\sqrt{3} y 4\sqrt{3} para obtener 0.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}