Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\sqrt{x}=7-6-x
Resta x en los dos lados de la ecuación.
\sqrt{x}=1-x
Resta 6 de 7 para obtener 1.
\left(\sqrt{x}\right)^{2}=\left(1-x\right)^{2}
Obtiene el cuadrado de los dos lados de la ecuación.
x=\left(1-x\right)^{2}
Calcula \sqrt{x} a la potencia de 2 y obtiene x.
x=1-2x+x^{2}
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(1-x\right)^{2}.
x-1=-2x+x^{2}
Resta 1 en los dos lados.
x-1+2x=x^{2}
Agrega 2x a ambos lados.
3x-1=x^{2}
Combina x y 2x para obtener 3x.
3x-1-x^{2}=0
Resta x^{2} en los dos lados.
-x^{2}+3x-1=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace -1 por a, 3 por b y -1 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-3±\sqrt{9-4\left(-1\right)\left(-1\right)}}{2\left(-1\right)}
Obtiene el cuadrado de 3.
x=\frac{-3±\sqrt{9+4\left(-1\right)}}{2\left(-1\right)}
Multiplica -4 por -1.
x=\frac{-3±\sqrt{9-4}}{2\left(-1\right)}
Multiplica 4 por -1.
x=\frac{-3±\sqrt{5}}{2\left(-1\right)}
Suma 9 y -4.
x=\frac{-3±\sqrt{5}}{-2}
Multiplica 2 por -1.
x=\frac{\sqrt{5}-3}{-2}
Ahora, resuelva la ecuación x=\frac{-3±\sqrt{5}}{-2} dónde ± es más. Suma -3 y \sqrt{5}.
x=\frac{3-\sqrt{5}}{2}
Divide -3+\sqrt{5} por -2.
x=\frac{-\sqrt{5}-3}{-2}
Ahora, resuelva la ecuación x=\frac{-3±\sqrt{5}}{-2} dónde ± es menos. Resta \sqrt{5} de -3.
x=\frac{\sqrt{5}+3}{2}
Divide -3-\sqrt{5} por -2.
x=\frac{3-\sqrt{5}}{2} x=\frac{\sqrt{5}+3}{2}
La ecuación ahora está resuelta.
\sqrt{\frac{3-\sqrt{5}}{2}}+\frac{3-\sqrt{5}}{2}=7-6
Sustituya \frac{3-\sqrt{5}}{2} por x en la ecuación \sqrt{x}+x=7-6.
1=1
Simplifica. El valor x=\frac{3-\sqrt{5}}{2} satisface la ecuación.
\sqrt{\frac{\sqrt{5}+3}{2}}+\frac{\sqrt{5}+3}{2}=7-6
Sustituya \frac{\sqrt{5}+3}{2} por x en la ecuación \sqrt{x}+x=7-6.
2+5^{\frac{1}{2}}=1
Simplifica. El valor x=\frac{\sqrt{5}+3}{2} no satisface la ecuación.
x=\frac{3-\sqrt{5}}{2}
La ecuación \sqrt{x}=1-x tiene una solución única.