\sqrt { ( 1 + 6 ^ { 2 } ) [ ( \frac { 144 } { 36 } ) ^ { 2 } - 4 \times \frac { 121 } { 36 } }
Calcular
\frac{\sqrt{851}}{3}\approx 9,723968097
Compartir
Copiado en el Portapapeles
\sqrt{\left(1+36\right)\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
Calcula 6 a la potencia de 2 y obtiene 36.
\sqrt{37\left(\left(\frac{144}{36}\right)^{2}-4\times \frac{121}{36}\right)}
Suma 1 y 36 para obtener 37.
\sqrt{37\left(4^{2}-4\times \frac{121}{36}\right)}
Divide 144 entre 36 para obtener 4.
\sqrt{37\left(16-4\times \frac{121}{36}\right)}
Calcula 4 a la potencia de 2 y obtiene 16.
\sqrt{37\left(16-\frac{121}{9}\right)}
Multiplica 4 y \frac{121}{36} para obtener \frac{121}{9}.
\sqrt{37\times \frac{23}{9}}
Resta \frac{121}{9} de 16 para obtener \frac{23}{9}.
\sqrt{\frac{851}{9}}
Multiplica 37 y \frac{23}{9} para obtener \frac{851}{9}.
\frac{\sqrt{851}}{\sqrt{9}}
Vuelva a escribir la raíz cuadrada de la división \sqrt{\frac{851}{9}} como la división de las raíces cuadradas \frac{\sqrt{851}}{\sqrt{9}}.
\frac{\sqrt{851}}{3}
Calcule la raíz cuadrada de 9 y obtenga 3.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}