Calcular
14641
Compartir
Copiado en el Portapapeles
\int _{0\times 0}^{121}2x\mathrm{d}x-0
Multiplica 0 y 0 para obtener 0.
\int _{0}^{121}2x\mathrm{d}x-0
Multiplica 0 y 0 para obtener 0.
\int _{0}^{121}2x\mathrm{d}x+0
Multiplica -1 y 0 para obtener 0.
\int _{0}^{121}2x\mathrm{d}x
Cualquier valor más cero da como resultado su mismo valor.
\int 2x\mathrm{d}x
Evaluar primero la integral indefinida.
2\int x\mathrm{d}x
Simplificar la constante con \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
x^{2}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 2 por \frac{x^{2}}{2}.
121^{2}-0^{2}
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
14641
Simplifica.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}