Saltar al contenido principal
Calcular
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int 3x^{3}-x^{2}+2x-4\mathrm{d}x
Evaluar primero la integral indefinida.
\int 3x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -4\mathrm{d}x
Integrar suma término por término.
3\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Simplificar la constante en cada uno de los términos.
\frac{3x^{4}}{4}-\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 3 por \frac{x^{4}}{4}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -4\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica -1 por \frac{x^{3}}{3}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}+\int -4\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 2 por \frac{x^{2}}{2}.
\frac{3x^{4}}{4}-\frac{x^{3}}{3}+x^{2}-4x
Encuentra la parte entera de -4 mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
\frac{3}{4}\times 1^{4}-\frac{1^{3}}{3}+1^{2}-4-\left(\frac{3}{4}\times 0^{4}-\frac{0^{3}}{3}+0^{2}-4\times 0\right)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
-\frac{31}{12}
Simplifica.