Calcular
-448
Compartir
Copiado en el Portapapeles
\int 3x^{3}+x-4\mathrm{d}x
Evaluar primero la integral indefinida.
\int 3x^{3}\mathrm{d}x+\int x\mathrm{d}x+\int -4\mathrm{d}x
Integrar suma término por término.
3\int x^{3}\mathrm{d}x+\int x\mathrm{d}x+\int -4\mathrm{d}x
Simplificar la constante en cada uno de los términos.
\frac{3x^{4}}{4}+\int x\mathrm{d}x+\int -4\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 3 por \frac{x^{4}}{4}.
\frac{3x^{4}}{4}+\frac{x^{2}}{2}+\int -4\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}.
\frac{3x^{4}}{4}+\frac{x^{2}}{2}-4x
Encuentra la parte entera de -4 mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
\frac{3}{4}\times 3^{4}+\frac{3^{2}}{2}-4\times 3-\left(\frac{3}{4}\left(-5\right)^{4}+\frac{\left(-5\right)^{2}}{2}-4\left(-5\right)\right)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
-448
Simplifica.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}