Calcular
\ln(\frac{11}{7})\approx 0,451985124
Compartir
Copiado en el Portapapeles
\int \frac{1}{x}\mathrm{d}x
Evaluar primero la integral indefinida.
\ln(|x|)
Utilice \int \frac{1}{x}\mathrm{d}x=\ln(|x|) de la tabla de integrales comunes para obtener el resultado.
\ln(|11|)-\ln(|7|)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
\ln(\frac{11}{7})
Simplifica.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}