Calcular
\frac{271}{6}\approx 45,166666667
Compartir
Copiado en el Portapapeles
\int _{4}^{9}\left(\sqrt{x}\right)^{2}+\sqrt{x}\mathrm{d}x
Usa la propiedad distributiva para multiplicar \sqrt{x}+1 por \sqrt{x}.
\int _{4}^{9}x+\sqrt{x}\mathrm{d}x
Calcula \sqrt{x} a la potencia de 2 y obtiene x.
\int x+\sqrt{x}\mathrm{d}x
Evaluar primero la integral indefinida.
\int x\mathrm{d}x+\int \sqrt{x}\mathrm{d}x
Integrar suma término por término.
\frac{x^{2}}{2}+\int \sqrt{x}\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}.
\frac{x^{2}}{2}+\frac{2x^{\frac{3}{2}}}{3}
Vuelva a escribir \sqrt{x} como x^{\frac{1}{2}}. Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{\frac{1}{2}}\mathrm{d}x por \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Simplifica.
\frac{9^{2}}{2}+\frac{2}{3}\times 9^{\frac{3}{2}}-\left(\frac{4^{2}}{2}+\frac{2}{3}\times 4^{\frac{3}{2}}\right)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
\frac{271}{6}
Simplifica.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}