Calcular
\frac{1561}{3}\approx 520,333333333
Compartir
Copiado en el Portapapeles
\int _{-2}^{5}16x^{2}-24x+9\mathrm{d}x
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(4x-3\right)^{2}.
\int 16x^{2}-24x+9\mathrm{d}x
Evaluar primero la integral indefinida.
\int 16x^{2}\mathrm{d}x+\int -24x\mathrm{d}x+\int 9\mathrm{d}x
Integrar suma término por término.
16\int x^{2}\mathrm{d}x-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Simplificar la constante en cada uno de los términos.
\frac{16x^{3}}{3}-24\int x\mathrm{d}x+\int 9\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica 16 por \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-12x^{2}+\int 9\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica -24 por \frac{x^{2}}{2}.
\frac{16x^{3}}{3}-12x^{2}+9x
Encuentra la parte entera de 9 mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
\frac{16}{3}\times 5^{3}-12\times 5^{2}+9\times 5-\left(\frac{16}{3}\left(-2\right)^{3}-12\left(-2\right)^{2}+9\left(-2\right)\right)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
\frac{1561}{3}
Simplifica.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}