Saltar al contenido principal
Calcular
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int x^{3}-2x^{2}-13x\mathrm{d}x
Evaluar primero la integral indefinida.
\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -13x\mathrm{d}x
Integrar suma término por término.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Simplificar la constante en cada uno de los términos.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x-13\int x\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-13\int x\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica -2 por \frac{x^{3}}{3}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}-\frac{13x^{2}}{2}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica -13 por \frac{x^{2}}{2}.
\frac{0^{4}}{4}-\frac{2}{3}\times 0^{3}-\frac{13}{2}\times 0^{2}-\left(\frac{\left(-1\right)^{4}}{4}-\frac{2}{3}\left(-1\right)^{3}-\frac{13}{2}\left(-1\right)^{2}\right)
La integral definida es la antiderivada de la expresión calculada en el límite superior de la integración, menos la antiderivada calculada en el límite inferior de la integración.
\frac{67}{12}
Simplifica.