Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int \frac{1}{100}\left(3-7x\right)^{2}\left(91+292x\right)^{2}\mathrm{d}x
Calcula 10 a la potencia de -2 y obtiene \frac{1}{100}.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(91+292x\right)^{2}\mathrm{d}x
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(3-7x\right)^{2}.
\int \frac{1}{100}\left(9-42x+49x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(91+292x\right)^{2}.
\int \left(\frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2}\right)\left(8281+53144x+85264x^{2}\right)\mathrm{d}x
Usa la propiedad distributiva para multiplicar \frac{1}{100} por 9-42x+49x^{2}.
\int \frac{74529}{100}+\frac{65247}{50}x-\frac{1058903}{100}x^{2}-\frac{244258}{25}x^{3}+\frac{1044484}{25}x^{4}\mathrm{d}x
Usa la propiedad distributiva para multiplicar \frac{9}{100}-\frac{21}{50}x+\frac{49}{100}x^{2} por 8281+53144x+85264x^{2} y combinar términos semejantes.
\int \frac{74529}{100}\mathrm{d}x+\int \frac{65247x}{50}\mathrm{d}x+\int -\frac{1058903x^{2}}{100}\mathrm{d}x+\int -\frac{244258x^{3}}{25}\mathrm{d}x+\int \frac{1044484x^{4}}{25}\mathrm{d}x
Integrar suma término por término.
\int \frac{74529}{100}\mathrm{d}x+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
Simplificar la constante en cada uno de los términos.
\frac{74529x}{100}+\frac{65247\int x\mathrm{d}x}{50}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
Encuentra la parte entera de \frac{74529}{100} mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903\int x^{2}\mathrm{d}x}{100}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica \frac{65247}{50} por \frac{x^{2}}{2}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{244258\int x^{3}\mathrm{d}x}{25}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica -\frac{1058903}{100} por \frac{x^{3}}{3}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484\int x^{4}\mathrm{d}x}{25}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica -\frac{244258}{25} por \frac{x^{4}}{4}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}. Multiplica \frac{1044484}{25} por \frac{x^{5}}{5}.
\frac{74529x}{100}+\frac{65247x^{2}}{100}-\frac{1058903x^{3}}{300}-\frac{122129x^{4}}{50}+\frac{1044484x^{5}}{125}+С
Si F\left(x\right) es un antiderivado de f\left(x\right), el conjunto de todos los antiderivados de f\left(x\right) viene dado por F\left(x\right)+C. Por lo tanto, agregue la constante de la integración C\in \mathrm{R} al resultado.