Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int \left(x+\frac{1}{2}\right)\left(\left(x^{2}\right)^{2}+2x^{2}x+x^{2}\right)\mathrm{d}x
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x^{2}+x\right)^{2}.
\int \left(x+\frac{1}{2}\right)\left(x^{4}+2x^{2}x+x^{2}\right)\mathrm{d}x
Para elevar una potencia a otra potencia, multiplique los exponentes. Multiplique 2 y 2 para obtener 4.
\int \left(x+\frac{1}{2}\right)\left(x^{4}+2x^{3}+x^{2}\right)\mathrm{d}x
Para multiplicar potencias de la misma base, sume sus exponentes. Sume 2 y 1 para obtener 3.
\int x^{5}+\frac{5}{2}x^{4}+2x^{3}+\frac{1}{2}x^{2}\mathrm{d}x
Usa la propiedad distributiva para multiplicar x+\frac{1}{2} por x^{4}+2x^{3}+x^{2} y combinar términos semejantes.
\int x^{5}\mathrm{d}x+\int \frac{5x^{4}}{2}\mathrm{d}x+\int 2x^{3}\mathrm{d}x+\int \frac{x^{2}}{2}\mathrm{d}x
Integrar suma término por término.
\int x^{5}\mathrm{d}x+\frac{5\int x^{4}\mathrm{d}x}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
Simplificar la constante en cada uno de los términos.
\frac{x^{6}}{6}+\frac{5\int x^{4}\mathrm{d}x}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{5}\mathrm{d}x por \frac{x^{6}}{6}.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+2\int x^{3}\mathrm{d}x+\frac{\int x^{2}\mathrm{d}x}{2}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}. Multiplica \frac{5}{2} por \frac{x^{5}}{5}.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{x^{4}}{2}+\frac{\int x^{2}\mathrm{d}x}{2}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{3}\mathrm{d}x por \frac{x^{4}}{4}. Multiplica 2 por \frac{x^{4}}{4}.
\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{x^{4}}{2}+\frac{x^{3}}{6}
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica \frac{1}{2} por \frac{x^{3}}{3}.
\frac{x^{4}}{2}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+\frac{x^{3}}{6}
Simplifica.
\frac{x^{4}}{2}+\frac{x^{5}}{2}+\frac{x^{6}}{6}+\frac{x^{3}}{6}+С
Si F\left(x\right) es un antiderivado de f\left(x\right), el conjunto de todos los antiderivados de f\left(x\right) viene dado por F\left(x\right)+C. Por lo tanto, agregue la constante de la integración C\in \mathrm{R} al resultado.