Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int 112x^{13}+128x^{7}+16x+112x^{6}+16\mathrm{d}x
Usa la propiedad distributiva para multiplicar 4x^{7}+4x+4 por 28x^{6}+4 y combinar términos semejantes.
\int 112x^{13}\mathrm{d}x+\int 128x^{7}\mathrm{d}x+\int 16x\mathrm{d}x+\int 112x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Integrar suma término por término.
112\int x^{13}\mathrm{d}x+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Simplificar la constante en cada uno de los términos.
8x^{14}+128\int x^{7}\mathrm{d}x+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{13}\mathrm{d}x por \frac{x^{14}}{14}. Multiplica 112 por \frac{x^{14}}{14}.
8x^{14}+16x^{8}+16\int x\mathrm{d}x+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{7}\mathrm{d}x por \frac{x^{8}}{8}. Multiplica 128 por \frac{x^{8}}{8}.
8x^{14}+16x^{8}+8x^{2}+112\int x^{6}\mathrm{d}x+\int 16\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x\mathrm{d}x por \frac{x^{2}}{2}. Multiplica 16 por \frac{x^{2}}{2}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+\int 16\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{6}\mathrm{d}x por \frac{x^{7}}{7}. Multiplica 112 por \frac{x^{7}}{7}.
8x^{14}+16x^{8}+8x^{2}+16x^{7}+16x
Encuentra la parte entera de 16 mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
8x^{14}+16x^{8}+16x^{7}+8x^{2}+16x+С
Si F\left(x\right) es un antiderivado de f\left(x\right), el conjunto de todos los antiderivados de f\left(x\right) viene dado por F\left(x\right)+C. Por lo tanto, agregue la constante de la integración C\in \mathrm{R} al resultado.