Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares de búsqueda web

Compartir

\int 8\left(x^{2}\right)^{3}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
Utilice el teorema binomial \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} para expandir \left(2x^{2}+3\right)^{3}.
\int 8x^{6}+36\left(x^{2}\right)^{2}+54x^{2}+27\mathrm{d}x
Para elevar una potencia a otra potencia, multiplique los exponentes. Multiplique 2 y 3 para obtener 6.
\int 8x^{6}+36x^{4}+54x^{2}+27\mathrm{d}x
Para elevar una potencia a otra potencia, multiplique los exponentes. Multiplique 2 y 2 para obtener 4.
\int 8x^{6}\mathrm{d}x+\int 36x^{4}\mathrm{d}x+\int 54x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Integrar suma término por término.
8\int x^{6}\mathrm{d}x+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Simplificar la constante en cada uno de los términos.
\frac{8x^{7}}{7}+36\int x^{4}\mathrm{d}x+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{6}\mathrm{d}x por \frac{x^{7}}{7}. Multiplica 8 por \frac{x^{7}}{7}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+54\int x^{2}\mathrm{d}x+\int 27\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{4}\mathrm{d}x por \frac{x^{5}}{5}. Multiplica 36 por \frac{x^{5}}{5}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+\int 27\mathrm{d}x
Dado que \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} para k\neq -1, reemplace \int x^{2}\mathrm{d}x por \frac{x^{3}}{3}. Multiplica 54 por \frac{x^{3}}{3}.
\frac{8x^{7}}{7}+\frac{36x^{5}}{5}+18x^{3}+27x
Encuentra la parte entera de 27 mediante la tabla de \int a\mathrm{d}x=ax de regla integral común.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}
Simplifica.
27x+18x^{3}+\frac{36x^{5}}{5}+\frac{8x^{7}}{7}+С
Si F\left(x\right) es un antiderivado de f\left(x\right), el conjunto de todos los antiderivados de f\left(x\right) viene dado por F\left(x\right)+C. Por lo tanto, agregue la constante de la integración C\in \mathrm{R} al resultado.