Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. t
Tick mark Image

Problemas similares de búsqueda web

Compartir

\sqrt{6}\int t\mathrm{d}t
Simplificar la constante con \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
\sqrt{6}\times \frac{t^{2}}{2}
Dado que \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} para k\neq -1, reemplace \int t\mathrm{d}t por \frac{t^{2}}{2}.
\frac{\sqrt{6}t^{2}}{2}
Simplifica.
\frac{\sqrt{6}t^{2}}{2}+С
Si F\left(t\right) es un antiderivado de f\left(t\right), el conjunto de todos los antiderivados de f\left(t\right) viene dado por F\left(t\right)+C. Por lo tanto, agregue la constante de la integración C\in \mathrm{R} al resultado.