Calcular
\cos(x)
Diferenciar w.r.t. x
-\sin(x)
Cuestionario
Differentiation
5 problemas similares a:
\frac{d}{d x } \left( \sin ( x+025 \pi ) \right)
Compartir
Copiado en el Portapapeles
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0\pi ))
Multiplica 0 y 25 para obtener 0.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x+0))
Cualquier valor multiplicado por cero da como resultado cero.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))
Cualquier valor más cero da como resultado su mismo valor.
\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
Para una función f\left(x\right), la derivada es el límite de \frac{f\left(x+h\right)-f\left(x\right)}{h}, ya que h va a 0, si ese límite existe.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
Usa la fórmula de suma para el seno.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
Simplifica \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Reescribe el límite.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
Usa el hecho de que x es una constante al calcular límites, ya que h va a 0.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
El límite \lim_{x\to 0}\frac{\sin(x)}{x} es 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
Para calcular el límite \lim_{h\to 0}\frac{\cos(h)-1}{h}, primero multiplique el numerador y denominador por \cos(h)+1.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
Multiplica \cos(h)+1 por \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
Usa la identidad pitagórica.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
Reescribe el límite.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
El límite \lim_{x\to 0}\frac{\sin(x)}{x} es 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
Usa el hecho de que \frac{\sin(h)}{\cos(h)+1} es un valor continuo en 0.
\cos(x)
Sustituye el valor 0 en la expresión \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}