Saltar al contenido principal
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
La variable x no puede ser igual a cualquiera de los valores -2,2 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por \left(x-2\right)\left(x+2\right), el mínimo común denominador de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Usa la propiedad distributiva para multiplicar x-2 por 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Resta 4 de 3 para obtener -1.
-1+2x=x^{2}-4
Piense en \left(x-2\right)\left(x+2\right). La multiplicación se puede transformar en la diferencia de cuadrados mediante la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Obtiene el cuadrado de 2.
-1+2x-x^{2}=-4
Resta x^{2} en los dos lados.
-1+2x-x^{2}+4=0
Agrega 4 a ambos lados.
3+2x-x^{2}=0
Suma -1 y 4 para obtener 3.
-x^{2}+2x+3=0
Cambia el polinomio para ponerlo en una forma estándar. Ordena los términos de mayor a menor según la potencia.
a+b=2 ab=-3=-3
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como -x^{2}+ax+bx+3. Para buscar a y b, configure un sistema que se va a resolver.
a=3 b=-1
Dado que ab es negativo, a y b tienen los signos opuestos. Como a+b es positivo, el número positivo tiene un valor absoluto mayor que el negativo. El único par como este es la solución de sistema.
\left(-x^{2}+3x\right)+\left(-x+3\right)
Vuelva a escribir -x^{2}+2x+3 como \left(-x^{2}+3x\right)+\left(-x+3\right).
-x\left(x-3\right)-\left(x-3\right)
Factoriza -x en el primero y -1 en el segundo grupo.
\left(x-3\right)\left(-x-1\right)
Simplifica el término común x-3 con la propiedad distributiva.
x=3 x=-1
Para buscar soluciones de ecuaciones, resuelva x-3=0 y -x-1=0.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
La variable x no puede ser igual a cualquiera de los valores -2,2 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por \left(x-2\right)\left(x+2\right), el mínimo común denominador de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Usa la propiedad distributiva para multiplicar x-2 por 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Resta 4 de 3 para obtener -1.
-1+2x=x^{2}-4
Piense en \left(x-2\right)\left(x+2\right). La multiplicación se puede transformar en la diferencia de cuadrados mediante la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Obtiene el cuadrado de 2.
-1+2x-x^{2}=-4
Resta x^{2} en los dos lados.
-1+2x-x^{2}+4=0
Agrega 4 a ambos lados.
3+2x-x^{2}=0
Suma -1 y 4 para obtener 3.
-x^{2}+2x+3=0
Todas las ecuaciones con la forma ax^{2}+bx+c=0 se pueden resolver con la fórmula cuadrática: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. La fórmula cuadrática proporciona dos soluciones, una cuando ± es una suma y otra cuando es una resta.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)\times 3}}{2\left(-1\right)}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace -1 por a, 2 por b y 3 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-1\right)\times 3}}{2\left(-1\right)}
Obtiene el cuadrado de 2.
x=\frac{-2±\sqrt{4+4\times 3}}{2\left(-1\right)}
Multiplica -4 por -1.
x=\frac{-2±\sqrt{4+12}}{2\left(-1\right)}
Multiplica 4 por 3.
x=\frac{-2±\sqrt{16}}{2\left(-1\right)}
Suma 4 y 12.
x=\frac{-2±4}{2\left(-1\right)}
Toma la raíz cuadrada de 16.
x=\frac{-2±4}{-2}
Multiplica 2 por -1.
x=\frac{2}{-2}
Ahora, resuelva la ecuación x=\frac{-2±4}{-2} dónde ± es más. Suma -2 y 4.
x=-1
Divide 2 por -2.
x=-\frac{6}{-2}
Ahora, resuelva la ecuación x=\frac{-2±4}{-2} dónde ± es menos. Resta 4 de -2.
x=3
Divide -6 por -2.
x=-1 x=3
La ecuación ahora está resuelta.
3+\left(x-2\right)\times 2=\left(x-2\right)\left(x+2\right)
La variable x no puede ser igual a cualquiera de los valores -2,2 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por \left(x-2\right)\left(x+2\right), el mínimo común denominador de x^{2}-4,x+2.
3+2x-4=\left(x-2\right)\left(x+2\right)
Usa la propiedad distributiva para multiplicar x-2 por 2.
-1+2x=\left(x-2\right)\left(x+2\right)
Resta 4 de 3 para obtener -1.
-1+2x=x^{2}-4
Piense en \left(x-2\right)\left(x+2\right). La multiplicación se puede transformar en la diferencia de cuadrados mediante la regla: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Obtiene el cuadrado de 2.
-1+2x-x^{2}=-4
Resta x^{2} en los dos lados.
2x-x^{2}=-4+1
Agrega 1 a ambos lados.
2x-x^{2}=-3
Suma -4 y 1 para obtener -3.
-x^{2}+2x=-3
Las ecuaciones cuadráticas como esta se pueden resolver si se completa el cuadrado. Para completar el cuadrado, la ecuación tiene que estar primero en la forma x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{3}{-1}
Divide los dos lados por -1.
x^{2}+\frac{2}{-1}x=-\frac{3}{-1}
Al dividir por -1, se deshace la multiplicación por -1.
x^{2}-2x=-\frac{3}{-1}
Divide 2 por -1.
x^{2}-2x=3
Divide -3 por -1.
x^{2}-2x+1=3+1
Divida -2, el coeficiente del término x, mediante la 2 de obtener -1. A continuación, agregue el cuadrado de -1 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-2x+1=4
Suma 3 y 1.
\left(x-1\right)^{2}=4
Factor x^{2}-2x+1. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-1=2 x-1=-2
Simplifica.
x=3 x=-1
Suma 1 a los dos lados de la ecuación.