Saltar al contenido principal
Resolver para x (solución compleja)
Tick mark Image
Resolver para x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplica x+1 y x+1 para obtener \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplica x-1 y x-1 para obtener \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Multiplica x^{2}+1 y x^{2}+1 para obtener \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Usa la propiedad distributiva para multiplicar \frac{1}{4} por x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Usa la propiedad distributiva para multiplicar \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} por x^{2}-2x+1 y combinar términos semejantes.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Combina -\frac{1}{2}x^{2} y x^{2} para obtener \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Para elevar una potencia a otra potencia, multiplique los exponentes. Multiplique 2 y 2 para obtener 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Usa la propiedad distributiva para multiplicar \frac{1}{4} por x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Resta \frac{1}{4}x^{4} en los dos lados.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Combina \frac{1}{4}x^{4} y -\frac{1}{4}x^{4} para obtener 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Resta \frac{1}{2}x^{2} en los dos lados.
\frac{1}{4}=\frac{1}{4}
Combina \frac{1}{2}x^{2} y -\frac{1}{2}x^{2} para obtener 0.
\text{true}
Compare \frac{1}{4} y \frac{1}{4}.
x\in \mathrm{C}
Esto es verdadero para cualquier x.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)\left(x-1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplica x+1 y x+1 para obtener \left(x+1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)\left(x^{2}+1\right)
Multiplica x-1 y x-1 para obtener \left(x-1\right)^{2}.
\frac{1}{4}\left(x+1\right)^{2}\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Multiplica x^{2}+1 y x^{2}+1 para obtener \left(x^{2}+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x-1\right)^{2}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+1\right)^{2}.
\frac{1}{4}\left(x^{2}+2x+1\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Utilice el teorema binomial \left(a-b\right)^{2}=a^{2}-2ab+b^{2} para expandir \left(x-1\right)^{2}.
\left(\frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4}\right)\left(x^{2}-2x+1\right)+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Usa la propiedad distributiva para multiplicar \frac{1}{4} por x^{2}+2x+1.
\frac{1}{4}x^{4}-\frac{1}{2}x^{2}+\frac{1}{4}+x^{2}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Usa la propiedad distributiva para multiplicar \frac{1}{4}x^{2}+\frac{1}{2}x+\frac{1}{4} por x^{2}-2x+1 y combinar términos semejantes.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{2}+1\right)^{2}
Combina -\frac{1}{2}x^{2} y x^{2} para obtener \frac{1}{2}x^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(\left(x^{2}\right)^{2}+2x^{2}+1\right)
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x^{2}+1\right)^{2}.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}\left(x^{4}+2x^{2}+1\right)
Para elevar una potencia a otra potencia, multiplique los exponentes. Multiplique 2 y 2 para obtener 4.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}
Usa la propiedad distributiva para multiplicar \frac{1}{4} por x^{4}+2x^{2}+1.
\frac{1}{4}x^{4}+\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{4}x^{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Resta \frac{1}{4}x^{4} en los dos lados.
\frac{1}{2}x^{2}+\frac{1}{4}=\frac{1}{2}x^{2}+\frac{1}{4}
Combina \frac{1}{4}x^{4} y -\frac{1}{4}x^{4} para obtener 0.
\frac{1}{2}x^{2}+\frac{1}{4}-\frac{1}{2}x^{2}=\frac{1}{4}
Resta \frac{1}{2}x^{2} en los dos lados.
\frac{1}{4}=\frac{1}{4}
Combina \frac{1}{2}x^{2} y -\frac{1}{2}x^{2} para obtener 0.
\text{true}
Compare \frac{1}{4} y \frac{1}{4}.
x\in \mathrm{R}
Esto es verdadero para cualquier x.