Saltar al contenido principal
Calcular
Tick mark Image
Expandir
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factorice \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 1 por \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Como \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} y \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Haga las multiplicaciones en 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine los términos semejantes en 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Expresa \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} como una única fracción.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Anula x tanto en el numerador como en el denominador.
\frac{-x-4}{x^{2}+4x+1}
Expande la expresión.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factorice \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 1 por \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Como \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} y \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Haga las multiplicaciones en 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine los términos semejantes en 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Expresa \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} como una única fracción.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Anula x tanto en el numerador como en el denominador.
\frac{-x-4}{x^{2}+4x+1}
Expande la expresión.