Calcular
-\frac{x+4}{x^{2}+4x+1}
Expandir
-\frac{x+4}{x^{2}+4x+1}
Gráfico
Cuestionario
Polynomial
5 problemas similares a:
\frac{ \frac{ 1 }{ { \left(2+x \right) }^{ 2 } -3 } -1 }{ x }
Compartir
Copiado en el Portapapeles
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factorice \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 1 por \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Como \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} y \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Haga las multiplicaciones en 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine los términos semejantes en 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Expresa \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} como una única fracción.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Anula x tanto en el numerador como en el denominador.
\frac{-x-4}{x^{2}+4x+1}
Expande la expresión.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-1}{x}
Factorice \left(2+x\right)^{2}-3.
\frac{\frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}-\frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. Multiplica 1 por \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}.
\frac{\frac{1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Como \frac{1}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} y \frac{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\frac{1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Haga las multiplicaciones en 1-\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right).
\frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x}
Combine los términos semejantes en 1-x^{2}-x\sqrt{3}-2x+\sqrt{3}x-1-2x.
\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)x}
Expresa \frac{\frac{-x^{2}-4x}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}}{x} como una única fracción.
\frac{x\left(-x-4\right)}{x\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{-x-4}{\left(x-\left(\sqrt{3}-2\right)\right)\left(x-\left(-\sqrt{3}-2\right)\right)}
Anula x tanto en el numerador como en el denominador.
\frac{-x-4}{x^{2}+4x+1}
Expande la expresión.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}