Resolver para x
x = \frac{20000 \sqrt{950625000130} + 32500000000}{12999999999} \approx 4
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}\approx 1
Gráfico
Compartir
Copiado en el Portapapeles
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
La variable x no puede ser igual a cualquiera de los valores 1,4 ya que la división por cero no está definida. Multiplica los dos lados de la ecuación por \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Calcula 10 a la potencia de 9 y obtiene 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Multiplica 13 y 1000000000 para obtener 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Usa la propiedad distributiva para multiplicar 13000000000 por x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Usa la propiedad distributiva para multiplicar 13000000000x-52000000000 por x-1 y combinar términos semejantes.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Resta 13000000000x^{2} en los dos lados.
-12999999999x^{2}=-65000000000x+52000000000
Combina x^{2} y -13000000000x^{2} para obtener -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Agrega 65000000000x a ambos lados.
-12999999999x^{2}+65000000000x-52000000000=0
Resta 52000000000 en los dos lados.
x=\frac{-65000000000±\sqrt{65000000000^{2}-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace -12999999999 por a, 65000000000 por b y -52000000000 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-65000000000±\sqrt{4225000000000000000000-4\left(-12999999999\right)\left(-52000000000\right)}}{2\left(-12999999999\right)}
Obtiene el cuadrado de 65000000000.
x=\frac{-65000000000±\sqrt{4225000000000000000000+51999999996\left(-52000000000\right)}}{2\left(-12999999999\right)}
Multiplica -4 por -12999999999.
x=\frac{-65000000000±\sqrt{4225000000000000000000-2703999999792000000000}}{2\left(-12999999999\right)}
Multiplica 51999999996 por -52000000000.
x=\frac{-65000000000±\sqrt{1521000000208000000000}}{2\left(-12999999999\right)}
Suma 4225000000000000000000 y -2703999999792000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{2\left(-12999999999\right)}
Toma la raíz cuadrada de 1521000000208000000000.
x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998}
Multiplica 2 por -12999999999.
x=\frac{40000\sqrt{950625000130}-65000000000}{-25999999998}
Ahora, resuelva la ecuación x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} dónde ± es más. Suma -65000000000 y 40000\sqrt{950625000130}.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Divide -65000000000+40000\sqrt{950625000130} por -25999999998.
x=\frac{-40000\sqrt{950625000130}-65000000000}{-25999999998}
Ahora, resuelva la ecuación x=\frac{-65000000000±40000\sqrt{950625000130}}{-25999999998} dónde ± es menos. Resta 40000\sqrt{950625000130} de -65000000000.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
Divide -65000000000-40000\sqrt{950625000130} por -25999999998.
x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999} x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999}
La ecuación ahora está resuelta.
x^{2}=13\times 10^{9}\left(x-4\right)\left(x-1\right)
La variable x no puede ser igual a cualquiera de los valores 1,4 ya que la división por cero no está definida. Multiplica los dos lados de la ecuación por \left(x-4\right)\left(x-1\right).
x^{2}=13\times 1000000000\left(x-4\right)\left(x-1\right)
Calcula 10 a la potencia de 9 y obtiene 1000000000.
x^{2}=13000000000\left(x-4\right)\left(x-1\right)
Multiplica 13 y 1000000000 para obtener 13000000000.
x^{2}=\left(13000000000x-52000000000\right)\left(x-1\right)
Usa la propiedad distributiva para multiplicar 13000000000 por x-4.
x^{2}=13000000000x^{2}-65000000000x+52000000000
Usa la propiedad distributiva para multiplicar 13000000000x-52000000000 por x-1 y combinar términos semejantes.
x^{2}-13000000000x^{2}=-65000000000x+52000000000
Resta 13000000000x^{2} en los dos lados.
-12999999999x^{2}=-65000000000x+52000000000
Combina x^{2} y -13000000000x^{2} para obtener -12999999999x^{2}.
-12999999999x^{2}+65000000000x=52000000000
Agrega 65000000000x a ambos lados.
\frac{-12999999999x^{2}+65000000000x}{-12999999999}=\frac{52000000000}{-12999999999}
Divide los dos lados por -12999999999.
x^{2}+\frac{65000000000}{-12999999999}x=\frac{52000000000}{-12999999999}
Al dividir por -12999999999, se deshace la multiplicación por -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=\frac{52000000000}{-12999999999}
Divide 65000000000 por -12999999999.
x^{2}-\frac{65000000000}{12999999999}x=-\frac{52000000000}{12999999999}
Divide 52000000000 por -12999999999.
x^{2}-\frac{65000000000}{12999999999}x+\left(-\frac{32500000000}{12999999999}\right)^{2}=-\frac{52000000000}{12999999999}+\left(-\frac{32500000000}{12999999999}\right)^{2}
Divida -\frac{65000000000}{12999999999}, el coeficiente del término x, mediante la 2 de obtener -\frac{32500000000}{12999999999}. A continuación, agregue el cuadrado de -\frac{32500000000}{12999999999} a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=-\frac{52000000000}{12999999999}+\frac{1056250000000000000000}{168999999974000000001}
Obtiene el cuadrado de -\frac{32500000000}{12999999999}. Para hacerlo, calcula el cuadrado del numerador y el denominador de la fracción.
x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}=\frac{380250000052000000000}{168999999974000000001}
Suma -\frac{52000000000}{12999999999} y \frac{1056250000000000000000}{168999999974000000001}. Para hacerlo, obtiene un denominador común y suma los numeradores y, después, reduce la fracción a los términos mínimos (si es posible).
\left(x-\frac{32500000000}{12999999999}\right)^{2}=\frac{380250000052000000000}{168999999974000000001}
Factor x^{2}-\frac{65000000000}{12999999999}x+\frac{1056250000000000000000}{168999999974000000001}. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{32500000000}{12999999999}\right)^{2}}=\sqrt{\frac{380250000052000000000}{168999999974000000001}}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-\frac{32500000000}{12999999999}=\frac{20000\sqrt{950625000130}}{12999999999} x-\frac{32500000000}{12999999999}=-\frac{20000\sqrt{950625000130}}{12999999999}
Simplifica.
x=\frac{20000\sqrt{950625000130}+32500000000}{12999999999} x=\frac{32500000000-20000\sqrt{950625000130}}{12999999999}
Suma \frac{32500000000}{12999999999} a los dos lados de la ecuación.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}