Resolver para x
x=3
Gráfico
Compartir
Copiado en el Portapapeles
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
La variable x no puede ser igual a cualquiera de los valores -9,0 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por x\left(x+9\right), el mínimo común denominador de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplica x+9 y x+9 para obtener \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplica x y x para obtener x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combina x^{2} y x^{2}\times 16 para obtener 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Usa la propiedad distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Resta 8x^{2} en los dos lados.
9x^{2}+18x+81=72x
Combina 17x^{2} y -8x^{2} para obtener 9x^{2}.
9x^{2}+18x+81-72x=0
Resta 72x en los dos lados.
9x^{2}-54x+81=0
Combina 18x y -72x para obtener -54x.
x^{2}-6x+9=0
Divide los dos lados por 9.
a+b=-6 ab=1\times 9=9
Para resolver la ecuación, desborde la mano izquierda agrupando. En primer lugar, la izquierda debe reescribirse como x^{2}+ax+bx+9. Para buscar a y b, configure un sistema que se va a resolver.
-1,-9 -3,-3
Dado que ab es positivo, a y b tienen el mismo signo. Dado que a+b es negativo, a y b son negativos. Mostrar todos los pares de números enteros que den como producto 9.
-1-9=-10 -3-3=-6
Calcule la suma de cada par.
a=-3 b=-3
La solución es el par que proporciona suma -6.
\left(x^{2}-3x\right)+\left(-3x+9\right)
Vuelva a escribir x^{2}-6x+9 como \left(x^{2}-3x\right)+\left(-3x+9\right).
x\left(x-3\right)-3\left(x-3\right)
Factoriza x en el primero y -3 en el segundo grupo.
\left(x-3\right)\left(x-3\right)
Simplifica el término común x-3 con la propiedad distributiva.
\left(x-3\right)^{2}
Reescribe como el cuadrado de un binomio.
x=3
Para buscar soluciones de ecuaciones, resuelva x-3=0.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
La variable x no puede ser igual a cualquiera de los valores -9,0 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por x\left(x+9\right), el mínimo común denominador de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplica x+9 y x+9 para obtener \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplica x y x para obtener x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combina x^{2} y x^{2}\times 16 para obtener 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Usa la propiedad distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Resta 8x^{2} en los dos lados.
9x^{2}+18x+81=72x
Combina 17x^{2} y -8x^{2} para obtener 9x^{2}.
9x^{2}+18x+81-72x=0
Resta 72x en los dos lados.
9x^{2}-54x+81=0
Combina 18x y -72x para obtener -54x.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 9\times 81}}{2\times 9}
Esta ecuación tiene el formato estándar: ax^{2}+bx+c=0. Reemplace 9 por a, -54 por b y 81 por c en la fórmula cuadrática, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 9\times 81}}{2\times 9}
Obtiene el cuadrado de -54.
x=\frac{-\left(-54\right)±\sqrt{2916-36\times 81}}{2\times 9}
Multiplica -4 por 9.
x=\frac{-\left(-54\right)±\sqrt{2916-2916}}{2\times 9}
Multiplica -36 por 81.
x=\frac{-\left(-54\right)±\sqrt{0}}{2\times 9}
Suma 2916 y -2916.
x=-\frac{-54}{2\times 9}
Toma la raíz cuadrada de 0.
x=\frac{54}{2\times 9}
El opuesto de -54 es 54.
x=\frac{54}{18}
Multiplica 2 por 9.
x=3
Divide 54 por 18.
\left(x+9\right)\left(x+9\right)+x\times 16x=8x\left(x+9\right)
La variable x no puede ser igual a cualquiera de los valores -9,0 ya que la división por cero no está definida. Multiplique ambos lados de la ecuación por x\left(x+9\right), el mínimo común denominador de x,x+9.
\left(x+9\right)^{2}+x\times 16x=8x\left(x+9\right)
Multiplica x+9 y x+9 para obtener \left(x+9\right)^{2}.
x^{2}+18x+81+x\times 16x=8x\left(x+9\right)
Utilice el teorema binomial \left(a+b\right)^{2}=a^{2}+2ab+b^{2} para expandir \left(x+9\right)^{2}.
x^{2}+18x+81+x^{2}\times 16=8x\left(x+9\right)
Multiplica x y x para obtener x^{2}.
17x^{2}+18x+81=8x\left(x+9\right)
Combina x^{2} y x^{2}\times 16 para obtener 17x^{2}.
17x^{2}+18x+81=8x^{2}+72x
Usa la propiedad distributiva para multiplicar 8x por x+9.
17x^{2}+18x+81-8x^{2}=72x
Resta 8x^{2} en los dos lados.
9x^{2}+18x+81=72x
Combina 17x^{2} y -8x^{2} para obtener 9x^{2}.
9x^{2}+18x+81-72x=0
Resta 72x en los dos lados.
9x^{2}-54x+81=0
Combina 18x y -72x para obtener -54x.
9x^{2}-54x=-81
Resta 81 en los dos lados. Cualquier valor restado de cero da como resultado su valor negativo.
\frac{9x^{2}-54x}{9}=-\frac{81}{9}
Divide los dos lados por 9.
x^{2}+\left(-\frac{54}{9}\right)x=-\frac{81}{9}
Al dividir por 9, se deshace la multiplicación por 9.
x^{2}-6x=-\frac{81}{9}
Divide -54 por 9.
x^{2}-6x=-9
Divide -81 por 9.
x^{2}-6x+\left(-3\right)^{2}=-9+\left(-3\right)^{2}
Divida -6, el coeficiente del término x, mediante la 2 de obtener -3. A continuación, agregue el cuadrado de -3 a los dos lados de la ecuación. Este paso hace que el lado izquierdo de la ecuación sea un cuadrado perfecto.
x^{2}-6x+9=-9+9
Obtiene el cuadrado de -3.
x^{2}-6x+9=0
Suma -9 y 9.
\left(x-3\right)^{2}=0
Factor x^{2}-6x+9. En general, cuando x^{2}+bx+c es un cuadrado perfecto, siempre se puede factorizar como \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{0}
Toma la raíz cuadrada de los dos lados de la ecuación.
x-3=0 x-3=0
Simplifica.
x=3 x=3
Suma 3 a los dos lados de la ecuación.
x=3
La ecuación ahora está resuelta. Las soluciones son las mismas.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}