Calcular
\frac{m\left(3m^{4}-13m^{3}-15m-12\right)}{\left(1-2m\right)\left(3m-13\right)\left(5m+4\right)}
Expandir
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{\left(1-2m\right)\left(3m-13\right)\left(5m+4\right)}
Compartir
Copiado en el Portapapeles
\frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}-\frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de \left(5m+4\right)\left(1-2m\right) y \left(3m-13\right)\left(1-2m\right) es \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right). Multiplica \frac{m^{4}}{\left(5m+4\right)\left(1-2m\right)} por \frac{3m-13}{3m-13}. Multiplica \frac{3m}{\left(3m-13\right)\left(1-2m\right)} por \frac{5m+4}{5m+4}.
\frac{m^{4}\left(3m-13\right)-3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Como \frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} y \frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Haga las multiplicaciones en m^{4}\left(3m-13\right)-3m\left(5m+4\right).
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{-30m^{3}+121m^{2}+51m-52}
Expande \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right).
\frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}-\frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de \left(5m+4\right)\left(1-2m\right) y \left(3m-13\right)\left(1-2m\right) es \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right). Multiplica \frac{m^{4}}{\left(5m+4\right)\left(1-2m\right)} por \frac{3m-13}{3m-13}. Multiplica \frac{3m}{\left(3m-13\right)\left(1-2m\right)} por \frac{5m+4}{5m+4}.
\frac{m^{4}\left(3m-13\right)-3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Como \frac{m^{4}\left(3m-13\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} y \frac{3m\left(5m+4\right)}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{\left(3m-13\right)\left(-2m+1\right)\left(5m+4\right)}
Haga las multiplicaciones en m^{4}\left(3m-13\right)-3m\left(5m+4\right).
\frac{3m^{5}-13m^{4}-15m^{2}-12m}{-30m^{3}+121m^{2}+51m-52}
Expande \left(3m-13\right)\left(-2m+1\right)\left(5m+4\right).
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}