Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image

Problemas similares de búsqueda web

Compartir

-4\left(2x^{3}-3x^{1}\right)^{-4-1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}-3x^{1})
Si F es la composición de dos funciones diferenciables, f\left(u\right) y u=g\left(x\right). Es decir, si F\left(x\right)=f\left(g\left(x\right)\right), entonces la derivada de F es la derivada de f en relación con u multiplicado por la derivada de g en relación con x, lo que es igual a \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-4\left(2x^{3}-3x^{1}\right)^{-5}\left(3\times 2x^{3-1}-3x^{1-1}\right)
La derivada de un polinomio es la suma de las derivadas de sus términos. La derivada de cualquier término constante es 0. La derivada de ax^{n} es nax^{n-1}.
\left(2x^{3}-3x^{1}\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Simplifica.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12x^{0}\right)
Para cualquier término t, t^{1}=t.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\times 1\right)
Para cualquier término t excepto 0, t^{0}=1.
\left(2x^{3}-3x\right)^{-5}\left(-24x^{2}+12\right)
Para cualquier término t, t\times 1=t y 1t=t.