Calcular
\frac{5\left(a-1\right)\left(a+2\right)}{18a^{4}}
Expandir
\frac{5\left(a^{2}+a-2\right)}{18a^{4}}
Compartir
Copiado en el Portapapeles
\frac{\left(a-1\right)\times 5}{3a\times 6a}\times \frac{a+2}{a^{2}}
Multiplica \frac{a-1}{3a} por \frac{5}{6a} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a\times 6aa^{2}}
Multiplica \frac{\left(a-1\right)\times 5}{3a\times 6a} por \frac{a+2}{a^{2}} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a^{2}\times 6a^{2}}
Multiplica a y a para obtener a^{2}.
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a^{4}\times 6}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume 2 y 2 para obtener 4.
\frac{\left(a-1\right)\times 5\left(a+2\right)}{18a^{4}}
Multiplica 3 y 6 para obtener 18.
\frac{\left(5a-5\right)\left(a+2\right)}{18a^{4}}
Usa la propiedad distributiva para multiplicar a-1 por 5.
\frac{5a^{2}+5a-10}{18a^{4}}
Usa la propiedad distributiva para multiplicar 5a-5 por a+2 y combinar términos semejantes.
\frac{\left(a-1\right)\times 5}{3a\times 6a}\times \frac{a+2}{a^{2}}
Multiplica \frac{a-1}{3a} por \frac{5}{6a} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a\times 6aa^{2}}
Multiplica \frac{\left(a-1\right)\times 5}{3a\times 6a} por \frac{a+2}{a^{2}} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a^{2}\times 6a^{2}}
Multiplica a y a para obtener a^{2}.
\frac{\left(a-1\right)\times 5\left(a+2\right)}{3a^{4}\times 6}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume 2 y 2 para obtener 4.
\frac{\left(a-1\right)\times 5\left(a+2\right)}{18a^{4}}
Multiplica 3 y 6 para obtener 18.
\frac{\left(5a-5\right)\left(a+2\right)}{18a^{4}}
Usa la propiedad distributiva para multiplicar a-1 por 5.
\frac{5a^{2}+5a-10}{18a^{4}}
Usa la propiedad distributiva para multiplicar 5a-5 por a+2 y combinar términos semejantes.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}