Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. a
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{a}{a\left(a-1\right)}
Tiene en cuenta las expresiones que aún no se han tenido en cuenta.
\frac{1}{a-1}
Anula a tanto en el numerador como en el denominador.
\frac{\left(a^{2}-a^{1}\right)\frac{\mathrm{d}}{\mathrm{d}a}(a^{1})-a^{1}\frac{\mathrm{d}}{\mathrm{d}a}(a^{2}-a^{1})}{\left(a^{2}-a^{1}\right)^{2}}
Para dos funciones diferenciables, la derivada del cociente de dos funciones es el denominador multiplicado por la derivada del numerador, menos el numerador multiplicado por la derivada del denominador, todo ello dividido por el cuadrado del denominador.
\frac{\left(a^{2}-a^{1}\right)a^{1-1}-a^{1}\left(2a^{2-1}-a^{1-1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
La derivada de un polinomio es la suma de las derivadas de sus términos. La derivada de cualquier término constante es 0. La derivada de ax^{n} es nax^{n-1}.
\frac{\left(a^{2}-a^{1}\right)a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Simplifica.
\frac{a^{2}a^{0}-a^{1}a^{0}-a^{1}\left(2a^{1}-a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Multiplica a^{2}-a^{1} por a^{0}.
\frac{a^{2}a^{0}-a^{1}a^{0}-\left(a^{1}\times 2a^{1}+a^{1}\left(-1\right)a^{0}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Multiplica a^{1} por 2a^{1}-a^{0}.
\frac{a^{2}-a^{1}-\left(2a^{1+1}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Para multiplicar potencias de la misma base, sume sus exponentes.
\frac{a^{2}-a^{1}-\left(2a^{2}-a^{1}\right)}{\left(a^{2}-a^{1}\right)^{2}}
Simplifica.
\frac{-a^{2}}{\left(a^{2}-a^{1}\right)^{2}}
Combina términos semejantes.
\frac{-a^{2}}{\left(a^{2}-a\right)^{2}}
Para cualquier término t, t^{1}=t.