Calcular
\frac{1152000000000000000000}{5037851}\approx 2,286689305 \cdot 10^{14}
Factorizar
\frac{2 ^ {25} \cdot 3 ^ {2} \cdot 5 ^ {18}}{7 \cdot 13 \cdot 23 \cdot 29 \cdot 83} = 228668930462611\frac{4711039}{5037851} = 228668930462611,94
Compartir
Copiado en el Portapapeles
\frac{9\times 10^{9}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-20}\times 91\times 166\times 10^{-27}}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume 11 y -31 para obtener -20.
\frac{9\times 10^{9}\times \left(16\times 10^{-19}\right)^{2}}{667\times 10^{-47}\times 91\times 166}
Para multiplicar potencias de la misma base, sume sus exponentes. Sume -20 y -27 para obtener -47.
\frac{9\times 10^{56}\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Para dividir potencias de la misma base, reste el exponente del denominador del exponente del numerador.
\frac{9\times 100000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Calcula 10 a la potencia de 56 y obtiene 100000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000\times \left(16\times 10^{-19}\right)^{2}}{91\times 166\times 667}
Multiplica 9 y 100000000000000000000000000000000000000000000000000000000 para obtener 900000000000000000000000000000000000000000000000000000000.
\frac{900000000000000000000000000000000000000000000000000000000\times \left(16\times \frac{1}{10000000000000000000}\right)^{2}}{91\times 166\times 667}
Calcula 10 a la potencia de -19 y obtiene \frac{1}{10000000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000\times \left(\frac{1}{625000000000000000}\right)^{2}}{91\times 166\times 667}
Multiplica 16 y \frac{1}{10000000000000000000} para obtener \frac{1}{625000000000000000}.
\frac{900000000000000000000000000000000000000000000000000000000\times \frac{1}{390625000000000000000000000000000000}}{91\times 166\times 667}
Calcula \frac{1}{625000000000000000} a la potencia de 2 y obtiene \frac{1}{390625000000000000000000000000000000}.
\frac{2304000000000000000000}{91\times 166\times 667}
Multiplica 900000000000000000000000000000000000000000000000000000000 y \frac{1}{390625000000000000000000000000000000} para obtener 2304000000000000000000.
\frac{2304000000000000000000}{15106\times 667}
Multiplica 91 y 166 para obtener 15106.
\frac{2304000000000000000000}{10075702}
Multiplica 15106 y 667 para obtener 10075702.
\frac{1152000000000000000000}{5037851}
Reduzca la fracción \frac{2304000000000000000000}{10075702} a su mínima expresión extrayendo y anulando 2.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}