Saltar al contenido principal
Calcular
Tick mark Image
Parte real
Tick mark Image

Problemas similares de búsqueda web

Compartir

\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}+\frac{1-i}{1+2i}+\frac{12}{5}
Multiplique el numerador y el denominador de \frac{4i}{1-2i} por el conjugado complejo del denominador, 1+2i.
\frac{-8+4i}{5}+\frac{1-i}{1+2i}+\frac{12}{5}
Haga las multiplicaciones en \frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
-\frac{8}{5}+\frac{4}{5}i+\frac{1-i}{1+2i}+\frac{12}{5}
Divide -8+4i entre 5 para obtener -\frac{8}{5}+\frac{4}{5}i.
\frac{1-i}{1+2i}+\frac{4}{5}+\frac{4}{5}i
Haga las sumas.
\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{4}{5}+\frac{4}{5}i
Multiplique el numerador y el denominador de \frac{1-i}{1+2i} por el conjugado complejo del denominador, 1-2i.
\frac{-1-3i}{5}+\frac{4}{5}+\frac{4}{5}i
Haga las multiplicaciones en \frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
-\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i
Divide -1-3i entre 5 para obtener -\frac{1}{5}-\frac{3}{5}i.
\frac{3}{5}+\frac{1}{5}i
Haga las sumas.
Re(\frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}+\frac{1-i}{1+2i}+\frac{12}{5})
Multiplique el numerador y el denominador de \frac{4i}{1-2i} por el conjugado complejo del denominador, 1+2i.
Re(\frac{-8+4i}{5}+\frac{1-i}{1+2i}+\frac{12}{5})
Haga las multiplicaciones en \frac{4i\left(1+2i\right)}{\left(1-2i\right)\left(1+2i\right)}.
Re(-\frac{8}{5}+\frac{4}{5}i+\frac{1-i}{1+2i}+\frac{12}{5})
Divide -8+4i entre 5 para obtener -\frac{8}{5}+\frac{4}{5}i.
Re(\frac{1-i}{1+2i}+\frac{4}{5}+\frac{4}{5}i)
Haga las sumas en -\frac{8}{5}+\frac{4}{5}i+\frac{12}{5}.
Re(\frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}+\frac{4}{5}+\frac{4}{5}i)
Multiplique el numerador y el denominador de \frac{1-i}{1+2i} por el conjugado complejo del denominador, 1-2i.
Re(\frac{-1-3i}{5}+\frac{4}{5}+\frac{4}{5}i)
Haga las multiplicaciones en \frac{\left(1-i\right)\left(1-2i\right)}{\left(1+2i\right)\left(1-2i\right)}.
Re(-\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i)
Divide -1-3i entre 5 para obtener -\frac{1}{5}-\frac{3}{5}i.
Re(\frac{3}{5}+\frac{1}{5}i)
Haga las sumas en -\frac{1}{5}-\frac{3}{5}i+\frac{4}{5}+\frac{4}{5}i.
\frac{3}{5}
La parte real de \frac{3}{5}+\frac{1}{5}i es \frac{3}{5}.