Calcular
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Factorizar
\frac{3\left(\alpha ^{2}+\alpha +\beta ^{2}+\beta \right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Compartir
Copiado en el Portapapeles
\frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}+\frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de \alpha +1 y \beta +1 es \left(\alpha +1\right)\left(\beta +1\right). Multiplica \frac{3\beta }{\alpha +1} por \frac{\beta +1}{\beta +1}. Multiplica \frac{3\alpha }{\beta +1} por \frac{\alpha +1}{\alpha +1}.
\frac{3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)}
Como \frac{3\beta \left(\beta +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} y \frac{3\alpha \left(\alpha +1\right)}{\left(\alpha +1\right)\left(\beta +1\right)} tienen el mismo denominador, sume sus numeradores para sumarlos.
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\left(\alpha +1\right)\left(\beta +1\right)}
Haga las multiplicaciones en 3\beta \left(\beta +1\right)+3\alpha \left(\alpha +1\right).
\frac{3\beta ^{2}+3\beta +3\alpha ^{2}+3\alpha }{\alpha \beta +\alpha +\beta +1}
Expande \left(\alpha +1\right)\left(\beta +1\right).
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}