Resolver para t
t = -\frac{34}{9} = -3\frac{7}{9} \approx -3,777777778
Compartir
Copiado en el Portapapeles
\frac{2}{7}t+\frac{2}{7}\times \frac{2}{3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Usa la propiedad distributiva para multiplicar \frac{2}{7} por t+\frac{2}{3}.
\frac{2}{7}t+\frac{2\times 2}{7\times 3}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Multiplica \frac{2}{7} por \frac{2}{3} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}\left(t-\frac{2}{3}\right)
Realiza las multiplicaciones en la fracción \frac{2\times 2}{7\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1}{5}\left(-\frac{2}{3}\right)
Usa la propiedad distributiva para multiplicar \frac{1}{5} por t-\frac{2}{3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{1\left(-2\right)}{5\times 3}
Multiplica \frac{1}{5} por -\frac{2}{3} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t+\frac{-2}{15}
Realiza las multiplicaciones en la fracción \frac{1\left(-2\right)}{5\times 3}.
\frac{2}{7}t+\frac{4}{21}=\frac{1}{5}t-\frac{2}{15}
La fracción \frac{-2}{15} se puede reescribir como -\frac{2}{15} extrayendo el signo negativo.
\frac{2}{7}t+\frac{4}{21}-\frac{1}{5}t=-\frac{2}{15}
Resta \frac{1}{5}t en los dos lados.
\frac{3}{35}t+\frac{4}{21}=-\frac{2}{15}
Combina \frac{2}{7}t y -\frac{1}{5}t para obtener \frac{3}{35}t.
\frac{3}{35}t=-\frac{2}{15}-\frac{4}{21}
Resta \frac{4}{21} en los dos lados.
\frac{3}{35}t=-\frac{14}{105}-\frac{20}{105}
El mínimo común múltiplo de 15 y 21 es 105. Convertir -\frac{2}{15} y \frac{4}{21} a fracciones con denominador 105.
\frac{3}{35}t=\frac{-14-20}{105}
Como -\frac{14}{105} y \frac{20}{105} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{3}{35}t=-\frac{34}{105}
Resta 20 de -14 para obtener -34.
t=-\frac{34}{105}\times \frac{35}{3}
Multiplica los dos lados por \frac{35}{3}, el recíproco de \frac{3}{35}.
t=\frac{-34\times 35}{105\times 3}
Multiplica -\frac{34}{105} por \frac{35}{3} (para hacerlo, multiplica el numerador por el numerador y el denominador por el denominador).
t=\frac{-1190}{315}
Realiza las multiplicaciones en la fracción \frac{-34\times 35}{105\times 3}.
t=-\frac{34}{9}
Reduzca la fracción \frac{-1190}{315} a su mínima expresión extrayendo y anulando 35.
Ejemplos
Ecuación cuadrática
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometría
4 \sin \theta \cos \theta = 2 \sin \theta
Ecuación lineal
y = 3x + 4
Aritmética
699 * 533
Matriz
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Ecuación simultánea
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferenciación
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integración
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Límites
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}