Saltar al contenido principal
Calcular
Tick mark Image
Diferenciar w.r.t. x
Tick mark Image
Gráfico

Problemas similares de búsqueda web

Compartir

\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de x-2 y x+1 es \left(x-2\right)\left(x+1\right). Multiplica \frac{1}{x-2} por \frac{x+1}{x+1}. Multiplica \frac{3}{x+1} por \frac{x-2}{x-2}.
\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)}
Como \frac{x+1}{\left(x-2\right)\left(x+1\right)} y \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)}
Haga las multiplicaciones en x+1-3\left(x-2\right).
\frac{-2x+7}{\left(x-2\right)\left(x+1\right)}
Combine los términos semejantes en x+1-3x+6.
\frac{-2x+7}{x^{2}-x-2}
Expande \left(x-2\right)\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1}{\left(x-2\right)\left(x+1\right)}-\frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Para sumar o restar expresiones, expándalas para que sus denominadores sean iguales. El mínimo común múltiplo de x-2 y x+1 es \left(x-2\right)\left(x+1\right). Multiplica \frac{1}{x-2} por \frac{x+1}{x+1}. Multiplica \frac{3}{x+1} por \frac{x-2}{x-2}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)})
Como \frac{x+1}{\left(x-2\right)\left(x+1\right)} y \frac{3\left(x-2\right)}{\left(x-2\right)\left(x+1\right)} tienen el mismo denominador, reste sus numeradores para restarlos.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{x+1-3x+6}{\left(x-2\right)\left(x+1\right)})
Haga las multiplicaciones en x+1-3\left(x-2\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{\left(x-2\right)\left(x+1\right)})
Combine los términos semejantes en x+1-3x+6.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}+x-2x-2})
Aplicar la propiedad distributiva multiplicando cada término de x-2 por cada término de x+1.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{-2x+7}{x^{2}-x-2})
Combina x y -2x para obtener -x.
\frac{\left(x^{2}-x^{1}-2\right)\frac{\mathrm{d}}{\mathrm{d}x}(-2x^{1}+7)-\left(-2x^{1}+7\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}-x^{1}-2)}{\left(x^{2}-x^{1}-2\right)^{2}}
Para dos funciones diferenciables, la derivada del cociente de dos funciones es el denominador multiplicado por la derivada del numerador, menos el numerador multiplicado por la derivada del denominador, todo ello dividido por el cuadrado del denominador.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{1-1}-\left(-2x^{1}+7\right)\left(2x^{2-1}-x^{1-1}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
La derivada de un polinomio es la suma de las derivadas de sus términos. La derivada de cualquier término constante es 0. La derivada de ax^{n} es nax^{n-1}.
\frac{\left(x^{2}-x^{1}-2\right)\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Simplifica.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}+7\right)\left(2x^{1}-x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Multiplica x^{2}-x^{1}-2 por -2x^{0}.
\frac{x^{2}\left(-2\right)x^{0}-x^{1}\left(-2\right)x^{0}-2\left(-2\right)x^{0}-\left(-2x^{1}\times 2x^{1}-2x^{1}\left(-1\right)x^{0}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Multiplica -2x^{1}+7 por 2x^{1}-x^{0}.
\frac{-2x^{2}-\left(-2x^{1}\right)-2\left(-2\right)x^{0}-\left(-2\times 2x^{1+1}-2\left(-1\right)x^{1}+7\times 2x^{1}+7\left(-1\right)x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Para multiplicar potencias de la misma base, sume sus exponentes.
\frac{-2x^{2}+2x^{1}+4x^{0}-\left(-4x^{2}+2x^{1}+14x^{1}-7x^{0}\right)}{\left(x^{2}-x^{1}-2\right)^{2}}
Simplifica.
\frac{2x^{2}-14x^{1}+11x^{0}}{\left(x^{2}-x^{1}-2\right)^{2}}
Combina términos semejantes.
\frac{2x^{2}-14x+11x^{0}}{\left(x^{2}-x-2\right)^{2}}
Para cualquier término t, t^{1}=t.
\frac{2x^{2}-14x+11\times 1}{\left(x^{2}-x-2\right)^{2}}
Para cualquier término t excepto 0, t^{0}=1.
\frac{2x^{2}-14x+11}{\left(x^{2}-x-2\right)^{2}}
Para cualquier término t, t\times 1=t y 1t=t.